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EMBEDDINGS AND BRANCHED COVERING SPACES
FOR THREE AND FOUR DIMENSIONAL
MANIFOLDS

HucH M. HILDEN

1. Introduction. The main purpose in writing this paper is
to point out a connection between embeddings of manifolds and
branched covering spaces of manifolds. The following theorem is a
corollary to Theorems 3, 4, and 5, and can be regarded as the main
result of this paper.

THEOREM. Let p: M™— S",n =38 or 4, be a 3-fold dihedral
branched covering space branched over a polyhedral knot or link if
n =3, or a closed orientable polyhedral surface, if n = 4.

Then there is a locally flat embedding e: M™ — S™ x S? such that
the following diagram commutes.

S x S
e/
Mn/ D 'l'
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It is a result of the author and José M. Montesinos ([2], [5])
that every closed orientable 3-manifold is a three fold dihedral
covering of S® branched over a knot or link. Indeed, this can be
done in a wide variety of ways satisfying various side conditions
{3D-

This result, together with the above theorem can be viewed as
saying that every closed orientable 3-manifold and certain closed
orientable 4-manifolds are topologically like Riemann surfaces.

Indeed, given such an M3®°* there is an S? multivalued function
f (see §4) defined on S*°** such that M?3*°**is the graph of f. More-
over, locally the singularities of f look like (z, 2) — 1V 2 or (z,, %,, 2) —
Vz.

It is unknown which closed orientable 4-manifolds can be 3-fold
dihedral covering spaces of S* branched over orientable surfaces.
But Montesinos ([7]) has recently shown that a large and important
class of four manifolds with boundary are three fold dihedral cover-
ings of D*, branched over locally flat, but not necessarily orientable,
properly embedded surfaces. On the other hand, it is a result of
Edmonds and Berstein that S'x S'x S'x S* and many other closed
orientable four manifolds cannot be threefold branched covering
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