AN ALGEBRA OF PSEUDO-DIFFERENTIAL OPERATORS WITH NON-SMOOTH SYMBOL

H. O. CORDES AND D. A. WILLIAMS

In [4], [1], [7], and [5] certain algebras of zero-order pseudodifferential operators were discussed which all were generated by closing the operator algebra $\hat{\mathfrak{A}}$ finitely generated from the elements

$$(0.1) \qquad \qquad \{a(M), b(D): a \in \mathscr{A}^+, b \in \mathscr{A}^*\},$$

with multiplication operators $u(x) \to a(x)u(x)$ denoted by a(M) and convolution operators (or formal Fourier multipliers) $b(D) = F^*a(M)F$, with F = Fourier transform. Various classes \mathscr{H}^+ and \mathscr{H}^* , and various operator topologies were used, with the purpose of using the generated topological algebra for proving normal solvability of singular elliptic problems Lu = f, $x \in \mathbb{R}^n$, with a suitable linear differential operator $L = \sum_{|\alpha| \leq N} a_{\alpha}(x)D^{\alpha}$.

At present let us focus on the algebra \mathfrak{A}_{∞} obtained from the classes

$$(0.2) \qquad \mathscr{M}^+ = \{ a \in C^{\infty}(\mathbf{R}^n) : a(x) = O(1), \ a^{(\beta)}(x) = o(1), \ \beta \neq 0 \}$$

and

(0.3)
$$\mathscr{A}^{\sharp} = \{ b \in C^{\infty}(\mathbf{R}^n) \colon b^{(\beta)} \in C(\mathbf{R}^n), \ \beta \in \mathbf{Z}^n_+ \},\$$

with the compactification B^n of R^n obtained by continuous extension of the vector-valued function $x \to x(1 + x^2)^{-1/2}$, where we close under the following operator topology: $\hat{\mathfrak{A}}$, with \mathscr{A}^+ and \mathscr{A}^* as in (0.2) and (0.3) may be seen to be a subalgebra of $\mathscr{L}(\mathfrak{H}_s)$, the algebra of continuous operators $\mathfrak{H}_s \to \mathfrak{H}_s$, with the L^2 -Sobolev space $\mathfrak{H}_s = \{u:$ $u \in \mathscr{S}'$, $||(1 - \mathcal{A})^{s/2}u||_{L^2} = ||u||_s < \infty\}$ of R^n . This is true for every $s \in R$, and therefore the elements of \mathfrak{A} also take the Frechet space \mathfrak{H}_∞ continuously to itself. A locally convex topology on \mathfrak{A} is generated by all the operator norms $||\mathcal{A}||_s = \sup\{||\mathcal{A}u||_s: ||u||_s \leq 1\}$. In fact this is a Frechet topology, and it suffices to only take the norms $||\mathcal{A}||_k$, $k \in \mathbb{Z}$. All this is discussed in details in [2]. We define \mathfrak{A}_∞ to be the completion of \mathfrak{A} under that topology.

Similarly one may complete \mathfrak{A} as a subalgebra of any given fixed $\mathscr{L}(\mathfrak{F}_s)$ in the norm topology, to obtain a Banach algebra \mathfrak{A}_s , which proves to be a C^* -subalgebra of $\mathscr{L}(\mathfrak{F}_s)$, containing the compact ideal $\mathfrak{R}_s = \mathfrak{R}(\mathfrak{F}_s)$ of $\mathscr{L}(\mathfrak{F}_s)$. In fact, $\mathfrak{A}_s/\mathfrak{R}_s$ is commutative, thus we have $\mathfrak{A}_s/\mathfrak{R}_s = C(M_s)$, with a certain compact Hausdorff space M, by the Gelfand-Naimark theorem. The space $M = M_s$ proves