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PROJECTIVE MODULES OVER SUBRINGS OF k[ X, Y]
GENERATED BY MONOMIALS

DAvID F. ANDERSON

In this paper we study finitely generated projective
modules over affine subrings A of k[X, Y] generated by
monomials. If A is normal, then all finitely generated pro-
jective A-modules are free. If A is not normal, we show
that finitely generated projective A-modules stably have the
form free @ rank one

1. Introduction. In this paper we study projective modules
over subrings A of k|X, Y] generated by monomials. We study
conditions on A so that all finitely generated projective A-modules
have the form free € rank one. In §IV we use Seshadri’s localization
technique to show that all finitely generated projective A-modules
are free when A is an affine normal subring of k[X, Y] generated
by monomials. If we drop the assumption that A is normal it need
not be true that all finitely generated projective A-modules are free.
However, in §V we show that finitely generated projective A-modules
stably have the form free @ rank one. We also give sufficient con-
ditions on % for finitely generated projective A-modules to have the
form free @ rank one. These results do not generalize to arbitrary
subrings of k[X, Y].
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2. Preliminaries. All rings A will be commutative with 1.
Spec (A) is the set of all prime ideals of A and max (A4) is the subset
of spec (4) consisting of maximal ideals. We give spec (4) the Zariski
topology. If X is a topological space, the combinatorial dimension
of X will be denoted by dim X. If A is a ring, the group of units
of Ais A*. SL(n, A) is the group of % X n matrices over A with
determinant 1, and E(n, A) is the subgroup of SL (n, A) generated
by elementary matrices. The Krull dimension of A will be denoted
by dim A. %k will always be a field. Let P be a finitely generated
projective A-module and @ € spec (4). We define rank, P to be
dim,/s,Po/QP,. If rank, P is constant, we will denote it by rank P.
Our K-theory notation will follow Bass [4].

K,(A) is the subgroup of K,(A) generated by [A™™*] — [P] for
finitely generated projective A-modules P, and Pic (4) is the group of
isomorphism classes of finitely generated projective A-modules of rank
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