THE FUNDAMENTAL DIVISOR OF NORMAL DOUBLE POINTS OF SURFACES

David Joseph Dixon

Abstract

Let W be a surface with a normal singular point w. Consider the minimal resolution of that singularity, $\pi: W^{\prime} \rightarrow W$. Let $\pi^{-1}(w)=Y=Y_{1} \cdots Y_{d}$, where the Y_{i} are distinct irreducible curves on W^{\prime}. We are interested in two divisors on W^{\prime} both of which have support on Y. These divisors are Z, the fundamental divisor, and M, the divisor of the maximal ideal. In general $Z \leqq M$. In this thesis we show that if w is a double point singularity which satisfies certain conditions, then $Z=M$.

Introduction. Let A denote a normal, two-dimensional local ring. For simplicity assume that the residue field, k, of A is algebraically closed. Let $\pi: Y \rightarrow \operatorname{Spec}(A)$ be a birational proper map with Y regular, i.e., a resolution of the singularity $\operatorname{Spec}(A)$. Denote by m^{\prime} the maximal ideal of A. Let $\pi^{-1}\left(m^{\prime}\right)=Y_{1} \cup \cdots \cup Y_{d}$, where the Y_{i} are distinct irreducible curves on Y. Then, according to Artin [1, page 132] there is a unique smallest positive divisor Z, with support $\bigcup_{i=1}^{d} Y_{i}$, such that $Z \cdot Y_{i} \leqq 0$ for all i. Z is called the fundamental divisor. We also have the divisor of the maximal ideal, M, given by

$$
M=\sum_{i=1}^{d} m_{i} Y_{i}
$$

where $m_{i}=\min _{t \in m^{\prime}}\left\{w_{i}(t)\right\}$ and w_{i} is the valuation determined by $Y_{i} \subseteq Y$. In general $Z \leqq M$. Artin [1, Theorem 4] shows that if $\operatorname{Spec}(A)$ has a rational singularity, then $Z=M$ on every resolution. Laufer [4, Theorem 3.13] proves that if $\operatorname{Spec}(A)$ has a minimally elliptic double point singularity, then $Z=M$ on every resolution. Laufer also gives examples of double point singularities for which $Z<M$. His surfaces have defining equation $z^{2}=f(x, y)$, where $f(x, y) \in k[[x, y]], f(0,0)=0$, and $f(x, y)$ is reducible at $(0,0)$.

In this paper we show that if $f(x, y)$ has even order or if $f(x, y)$ has odd order and is irreducible at (0,0), then $Z=M$ on the minimal resolution of $z^{2}=f(x, y)$. In $\S 1$ we give a method for obtaining a specific resolution of $\operatorname{Spec}(A)$ [3]. In $\S 2$ we perform some necessary computations with Z and M, and in $\S 3$ we give the proofs of the theorems.

1. Methods for resolving double point singularities. Let A
