COMMUTANTS AND THE OPERATOR EQUATION $AX = \lambda XA$

CARL C. COWEN

Suppose A is a bounded operator on the Banach space \mathscr{B} such that A or A^* is one-to-one. In this note, we point out a relation between the commutant of A, the commutants of its powers, and operators which intertwine A and λA , where λ is a root of unity. A consequence of this relation is that the commutants of A and A^n are different if and only if there is an operator Y, not zero, that satisfies $AY = \lambda YA$, where $\lambda^n = 1$, $\lambda \neq 1$. Combining this with Rosenblum's theorem, we see that if the spectra of A and XA are disjoint, the commutant of A is the same as that of A^2 . We also use the theorem to give a counterexample to a conjecture of Deddens concerning intertwining analytic Toeplitz operators.

If A, B, and X are bounded operators on \mathscr{B} , we say X commutes with A if XA = AX, and we say X intertwines A and B if XA = BX. The set of operators that commute with A, the commutant of A, will be denoted $\{A\}'$.

LEMMA. Suppose A is an operator such that A or A^* is oneto-one, and λ is a primitive nth root of 1. If X commutes with A^n , the operators $Y_i = \sum_{j=0}^{n-1} \lambda^{ij} A^{n-j-1} X A^j$, for $i = 0, 1, \dots, n-1$, are the unique operators such that $A Y_i = Y_i(\lambda^i A)$ and $n A^{n-1} X = \sum_{i=0}^{n-1} Y_i$.

Proof. Let $Y_i = \sum_{j=0}^{n-1} \lambda^{ij} A^{n-j-1} X A^j$. Then

$$egin{aligned} A\,Y_i &= \sum_{j=0}^{n-1} \lambda^{ij} A^{n-j} X A^j = A^n X + \sum_{j=1}^{n-1} \lambda^{ij} A^{n-j} X A^j \ &= X A^n + \sum_{j=1}^{n-1} \lambda^{ij} A^{n-j} X A^j \ &= \sum_{k=0}^{n-1} \lambda^{i(k+1)} A^{n-k-1} X A^{k+1} \ &= \left(\sum_{k=0}^{n-1} \lambda^{ik} A^{n-k-1} X A^k
ight) (\lambda^i A) = \,Y_i(\lambda^i A) \;. \end{aligned}$$

Since $\sum_{i=0}^{n-1} \lambda^{ij} = 0$ when $j \neq 0$, and the sum is n when j = 0,

$$\sum_{i=0}^{n-1} Y_i = \sum_{i=0}^{n-1} \sum_{j=0}^{n-1} \lambda^{ij} A^{n-j-1} X A^j \ = \sum_{j=0}^{n-1} A^{n-j-1} X A^j \sum_{i=0}^{n-1} \lambda^{ij} = n A^{n-1} X \, .$$