ON THE MULTIPLICATIVE COUSIN PROBLEMS FOR $N^{p}(D)$

Kenzō Adachi

Let D be a strictly convex domain in C^n with C^2 -class boundary. Let $N^p(D)$, 1 , be the set of all holomorphicfunctions <math>f in D such that $(\log^+|f|)^p$ has a harmonic majorant. The purpose of this paper is to show that the multiplicative Cousin problems for $N^p(D)$, 1 , are solvable.

Introduction. Let D be a domain in C^n . We denote by S_m 1. the class of bounded domains D in C^{*} with the properties that there exists a real function ρ of class C^2 defined on a neighborhood W of ∂D such that $d\rho \neq 0$ on $\partial D, D \cap W = \{z \in W: \rho(z) < 1\}$ and the real Hessian of ρ is positive definite on W. For $1 \leq p \leq \infty$, we denote by $N^{p}(D)$ the set of all holomorphic functions f in D such that $(\log^+|f|)^p$ has a harmonic majorant in D. When $p = \infty$, we assume that |f| is bounded in D. When $p = 1, N^{1}(D)$ is the Nevanlinna class. E. L. Stout [5] proved that the multiplicative Cousin problem with bounded data on every domain of class S_n can be solved. In this paper we shall prove that the multiplicative Cousin problems for $N^p(D)$, 1 , can be solved. The proof depends on the Riesztype theorem concerning conjugate functions and the estimates obtained by E. L. Stout [5], [6]. The required analysis is available on strictly pseudoconvex domains, but the geometric patching constructions in §3 depend on euclidean convexity. Explicitly, the above results are the following:

THEOREM. Let $D \in S_n$. Let $\{V_{\alpha}\}_{\alpha \in I}$ be an open covering of \overline{D} , and for each α , $f_{\alpha} \in N^p(V_{\alpha} \cap D)$, $1 . If for all <math>\alpha$, $\beta \in I$, $f_{\alpha}f_{\beta}^{-1}$ is an invertible element of $N^p(V_{\alpha} \cap V_{\beta} \cap D)$, then there exists a function $F \in N^p(D)$ such that for all $\alpha \in I$, Ff_{α}^{-1} is an invertible element of $N^p(V_{\alpha} \cap D)$.

In the case when D is an open unit polydisc in C^* , theorem for p = 1 was proved by S. E. Zarantonello [7], and theorem for $p = \infty$ was proved by E. L. Stout [4].

Let A(D) be the sheaf of germs of continuous function on \overline{D} that are holomorphic in D. I. Lieb [2] proved that $H^q(\overline{D}, A(D)) = 0$ for q > 0, provided D is a strictly pseudoconvex domain with C^5 -boundary. Let $D \in S_n$ and let D have a C^5 -boundary. Then, from the above Lieb's result and $H^2(D, \mathbb{Z}) = 0$, by applying the standard exact sequence of sheaves