ON THE MULTIPLICATIVE COUSIN PROBLEMS FOR $N^{p}(D)$

Kenzō Adachi

Let D be a strictly convex domain in C^{n} with C^{2}-class boundary. Let $N^{p}(D), 1<p<\infty$, be the set of all holomorphic functions f in D such that $\left(\log ^{+}|f|\right)^{p}$ has a harmonic majorant. The purpose of this paper is to show that the multiplicative Cousin problems for $N^{p}(D), 1<p<\infty$, are solvable.

1. Introduction. Let D be a domain in C^{n}. We denote by S_{n} the class of bounded domains D in C^{n} with the properties that there exists a real function ρ of class C^{2} defined on a neighborhood W of ∂D such that $d \rho \neq 0$ on $\partial D, D \cap W=\{z \in W: \rho(z)<1\}$ and the real Hessian of ρ is positive definite on W. For $1 \leqq p \leqq \infty$, we denote by $N^{p}(D)$ the set of all holomorphic functions f in D such that $\left(\log ^{+}|f|\right)^{p}$ has a harmonic majorant in D. When $p=\infty$, we assume that $|f|$ is bounded in D. When $p=1, N^{1}(D)$ is the Nevanlinna class. E. L. Stout [5] proved that the multiplicative Cousin problem with bounded data on every domain of class S_{n} can be solved. In this paper we shall prove that the multiplicative Cousin problems for $N^{p}(D), 1<p \leqq \infty$, can be solved. The proof depends on the Riesz type theorem concerning conjugate functions and the estimates obtained by E. L. Stout [5], [6]. The required analysis is available on strictly pseudoconvex domains, but the geometric patching constructions in $\S 3$ depend on euclidean convexity. Explicitly, the above results are the following:

Theorem. Let $D \in S_{n}$. Let $\left\{V_{\alpha}\right\}_{\alpha \in I}$ be an open covering of \bar{D}, and for each $\alpha, f_{\alpha} \in N^{p}\left(\mathrm{~V}_{\alpha} \cap D\right), 1<p \leqq \infty$. If for all $\alpha, \beta \in I, f_{\alpha} f_{\beta}^{-1}$ is an invertible element of $N^{p}\left(V_{\alpha} \cap V_{\beta} \cap D\right)$, then there exists a function $F \in N^{p}(D)$ such that for all $\alpha \in I, F f_{\alpha}^{-1}$ is an invertible element of $N^{p}\left(V_{\alpha} \cap D\right)$.

In the case when D is an open unit polydisc in C^{n}, theorem for $p=1$ was proved by S. E. Zarantonello [7], and theorem for $p=\infty$ was proved by E. L. Stout [4].

Let $A(D)$ be the sheaf of germs of continuous function on \bar{D} that are holomorphic in D. I. Lieb [2] proved that $H^{q}(\bar{D}, A(D))=0$ for $q>0$, provided D is a strictly pseudoconvex domain with C^{5}-boundary. Let $D \in S_{n}$ and let D have a C^{5}-boundary. Then, from the above Lieb's result and $H^{2}(D, \boldsymbol{Z})=0$, by applying the standard exact sequence of sheaves

