THE CARRIER SPACE OF A REFLEXIVE OPERATOR ALGEBRA

ALAN HOPENWASSER AND DAVID LARSON

Many properties of nest algebras are actually valid for reflexive operator algebras with a commutative subspace lattice. In this paper we collect a number of such results related to the carrier space of the algebra. Included among these results are a generalization of Ringrose's criterion, a description of the partial correspondence between lattice homomorphisms of the carrier space and projections in the lattice, the construction of isometric representations of certain quotient algebras, and a direct sum decomposition of the commutant of the core modulo the intersection of the spectral ideals.

Let $\mathcal{A} = \operatorname{Alg} \mathcal{L}$, where \mathcal{L} is a commutative subspace lattice and let \mathscr{I} be the intersection of all the spectral ideals in \mathscr{A} . (See §1 for definitions.) In §1 we generalize Ringrose's criterion to the commutative subspace lattice case: $A \in \mathscr{I}$ if, and only if, for each $\varepsilon > 0$ there is a finite family $\{E_i\}$ of mutually orthogonal intervals from \mathscr{L} such that $\sum E_i = 1$ and $||E_iAE_i|| < \varepsilon, i = 1, \dots, n$. We also prove that \mathscr{I} is the closed linear span of commutators of the form AL - LA, where $A \in \mathscr{A}$ and $L \in \mathscr{L}$. In §2 we describe the partial correspondence between certain projections in \mathcal{L} and certain lattice homomorphisms in the carrier space X. A necessary (but not sufficient) condition for an operator A to be in the radical of \mathscr{A} is given in $\S3$. In $\S4$ we exhibit isometric representations as algebras of operators acting on Hilbert space of each quotient algebra $\mathcal{M}/\mathcal{M}_{\phi}$ and of the quotient \mathcal{M}/\mathcal{I} . In the nest algebra case this was done by Lance in [5]. Finally, in §5 we generalize somewhat a theorem from [6] which identifies the \mathcal{I} -commutant of the core of \mathcal{A} as the direct sum of the diagonal of \mathcal{A} and \mathcal{I} .

1. Let \mathscr{L} be a commutative subspace lattice acting on a separable Hilbert space \mathscr{H} , that is to say, \mathscr{L} is a lattice of commuting, orthogonal projections on \mathscr{H} which contains 0 and 1 and is closed in the strong operator topology. Let $\mathscr{A} = \operatorname{Alg} \mathscr{L}$, the algebra of all operators leaving invariant each projection in \mathscr{L} . Then \mathscr{A} is a reflexive operator algebra whose lattice of invariant subspaces is just \mathscr{L} [1]. Define the *carrier space*, X, of \mathscr{L} to be the set of all lattice homomorphisms of \mathscr{L} onto the trivial lattice {0, 1}. If the carrier space is given the topology in which a net, ϕ_{ν} , converges to ϕ if, and only if, $\phi_{\nu}(L) \to \phi(L)$ for each $L \in \mathscr{L}$, then it becomes a