THE CASE OF EQUALITY IN THE MATRIX-VALUED TRIANGLE INEQUALITY

Robert C. Thompson

This paper presents an analysis of the case of equality in the matrix-valued triangle inequality. There is complete analogy with the case of equality in the usual scalar triangle inequality.

In order to describe our assertion more precisely, let A and B be n-square complex matrices, and by $|A|$ denote the positive semidefinite Hermitian matrix

$$
|A|=\left(A A^{*}\right)^{1 / 2}
$$

where A^{*} is the adjoint of A. It has been speculated several times in the literature that this inequality should "naturally" hold:

$$
|A+B| \leqq|A|+|B|,
$$

where the inequality sign signifies that the right hand side minus the left hand side is positive semidefinite. This inequality is false, however, as easy 2×2 examples show. Nevertheless, there is a valid matrix valued triangle inequality. It was discovered in [1], and takes the form

$$
\begin{equation*}
|A+B| \leqq U|A| U^{*}+V|B| V^{*} \tag{1}
\end{equation*}
$$

for appropriately chosen unitary matrices U and V (dependent upon A and B). However, no analysis of a "case of equality" for (1) was given in [1], and the purpose of this note is to supply such an analysis. Specifically, we have:

Theorem 1. The inequality sign in (1) must be equality if A and B have polar decompositions with a common unitary factor.

Theorem 2. Suppose A and B are such that inequality (1) can hold only with the equality sign. Then A and B have polar factorizations with a common unitary factor.

Proof of Theorem 1. We have $A=W H$ and $B=W K$, where W is unitary and H, K are positive semidefinite Hermitian. From (1) we easily deduce that

$$
H+K \leqq U_{1} H U_{1}^{*}+V_{1} K V_{1}^{*},
$$

