# GENERAL PEXIDER EQUATIONS (PART II): AN APPLICATION OF THE THEORY OF WEBS 

M. A. McKiernan

Given open connected $\Omega, \widetilde{\Omega} \subseteq R^{n}$ and continuous $T: \Omega \rightarrow$ $R, F: \widetilde{\Omega} \rightarrow R$ both strictly monotonic in each variable separately. The equation $h\left\{T\left(x_{1}, \cdots, x_{n}\right)\right\}=F\left\{f_{1}\left(x_{1}\right), \cdots, f_{n}\left(x_{n}\right)\right\}$ for the unknowns $h: T(\Omega) \rightarrow R$ and $\pi:\left(f_{1}, \cdots, f_{n}\right): \Omega \rightarrow \widetilde{\Omega}$ can be interpreted within the theory of webs (the "Gewebe" of Blaschke-Bol). The web structure is then used to prove: any continuous solution $\pi$ is uniquely determined on $\Omega$ by its value at two points of $\Omega$; if a solution $\pi$ is not continuous on $\Omega$, then $\pi(\omega)$ is dense in $\widetilde{\Omega}$ for every open $\omega$ in $\Omega$; if a solution $\pi$ is continuous at one point of $\Omega$, it is continuous on $\Omega$.

1. Formulation of results. We consider the equation

$$
h\left\{T\left(x_{1}, \cdots, x_{n}\right)\right\}=F\left\{f_{1}\left(x_{1}\right), \cdots, f_{n}\left(x_{n}\right)\right\}
$$

for given $T, F$, with $h, f_{1}, \cdots, f_{n}$ the unknowns. Specifically, we assume given two sets $\Omega, \widetilde{\Omega}$ in $R^{n}$ and two functions $T: \Omega \rightarrow R, F$ : $\widetilde{\Omega} \rightarrow R$. Let $\Omega_{i}$ and $\widetilde{\Omega}_{i}$ denote the projections of $\Omega$ and $\widetilde{\Omega}$ onto the $i$ th coordinate axis; by a product mapping $\pi: \Omega \rightarrow \widetilde{\Omega}$ is understood the restriction to $\Omega$ of a mapping $\left(f_{1}, \cdots, f_{n}\right): X_{1}^{n} \Omega_{i} \rightarrow R^{n}$ defined by the $n$ functions $f_{i}: \Omega_{i} \rightarrow \widetilde{\Omega}_{i}$. The above equation becomes $h \circ T=$ $F \circ \pi$ with $h: T(\Omega) \rightarrow R$ and $\pi: \Omega \rightarrow \widetilde{\Omega}$ the unknowns.

The present note is self-contained in that Part I [2] served only to indicate that the following hypotheses on $T$ and $F$ are not as restrictive as one might at first suppose. For the moment we assume only that:
(A.1) $T$ is continuous and strictly monotonic in each variable on $\Omega$,
(A.2) $F$ is strictly monotonic in each variable on $\widetilde{\Omega}$,
(A.3) $\Omega$ is open and connected.

Theorem 1. With (A.1,2,3) assume that $h \circ T=F \circ \pi$ and $\bar{h} \circ T=F \circ \bar{\pi}$ hold for two product mappiugs $\pi, \bar{\pi}$ on $\Omega$. If $\pi$ and $\bar{\pi}$ are equal at the end points of some line segment $l \subset \Omega$ parallel to a coordinate axis, then $\pi$ and $\bar{\pi}$ coincide on a set dense in $\Omega$. Hence two continuous solutions must be identical on $\Omega$ if they agree at the end points of such a line segment.

In the event $\Omega=R^{n}$ as in the classical case $T\left(x_{1}, \cdots, x_{n}\right)=x_{1}+$

