GENERAL PEXIDER EQUATIONS (PART II): AN APPLICATION OF THE THEORY OF WEBS

M. A. McKiernan

Given open connected Ω , $\widetilde{\Omega} \subseteq \mathbb{R}^n$ and continuous $T: \Omega \to \mathbb{R}, F: \widetilde{\Omega} \to \mathbb{R}$ both strictly monotonic in each variable separately. The equation $h\{T(x_1, \dots, x_n)\} = F\{f_1(x_1), \dots, f_n(x_n)\}$ for the unknowns $h: T(\Omega) \to \mathbb{R}$ and $\pi: (f_1, \dots, f_n): \Omega \to \widetilde{\Omega}$ can be interpreted within the theory of webs (the "Gewebe" of Blaschke-Bol). The web structure is then used to prove: any continuous solution π is uniquely determined on Ω by its value at two points of Ω ; if a solution π is not continuous on Ω , then $\pi(\omega)$ is dense in $\widetilde{\Omega}$ for every open ω in Ω ; if a solution π is continuous at one point of Ω , it is continuous on Ω .

1. Formulation of results. We consider the equation

$$h\{T(x_1, \dots, x_n)\} = F\{f_1(x_1), \dots, f_n(x_n)\}$$

for given T, F, with h, f_1, \dots, f_n the unknowns. Specifically, we assume given two sets $\Omega, \widetilde{\Omega}$ in \mathbb{R}^n and two functions $T: \Omega \to \mathbb{R}, F$: $\widetilde{\Omega} \to \mathbb{R}$. Let Ω_i and $\widetilde{\Omega}_i$ denote the projections of Ω and $\widetilde{\Omega}$ onto the *i*th coordinate axis; by a *product mapping* $\pi: \Omega \to \widetilde{\Omega}$ is understood the restriction to Ω of a mapping $(f_1, \dots, f_n): X_1^n \Omega_i \to \mathbb{R}^n$ defined by the *n* functions $f_i: \Omega_i \to \widetilde{\Omega}_i$. The above equation becomes $h \circ T =$ $F \circ \pi$ with $h: T(\Omega) \to \mathbb{R}$ and $\pi: \Omega \to \widetilde{\Omega}$ the unknowns.

The present note is self-contained in that Part I [2] served only to indicate that the following hypotheses on T and F are not as restrictive as one might at first suppose. For the moment we assume only that:

(A.1) T is continuous and strictly monotonic in each variable on Ω ,

(A.2) F is strictly monotonic in each variable on $\widetilde{\Omega}$,

(A.3) Ω is open and connected.

THEOREM 1. With (A.1,2,3) assume that $h \circ T = F \circ \pi$ and $\overline{h} \circ T = F \circ \overline{\pi}$ hold for two product mappings $\pi, \overline{\pi}$ on Ω . If π and $\overline{\pi}$ are equal at the end points of some line segment $l \subset \Omega$ parallel to a coordinate axis, then π and $\overline{\pi}$ coincide on a set dense in Ω . Hence two continuous solutions must be identical on Ω if they agree at the end points of such a line segment.

In the event $\Omega = R^n$ as in the classical case $T(x_1, \dots, x_n) = x_1 +$