T AS AN \mathcal{G} SUBMODULE OF G

W. J. WICKLESS

Let G be a mixed abelian group with torsion subgroup T. T is viewed as an \mathscr{C} submodule of G, where $\mathscr{C} = \operatorname{End} G$. It is shown that T is superfluous in G if and only if, \forall_p , either T_p is divisible or G/T_p is not p divisible. If G is not reduced, T is essential in G if and only if T contains a $Z(p^{\infty})$. Let I(G)[I(T)] be the \mathscr{C} injective hull of G[T]. Then I(G) = $I(T) \oplus X$ with X torsion free divisible and T is a pure subgroup of I(G). This can be used to obtain several results; for example, if $Q \not\subseteq I(T)$, TFAE: 1. $T \operatorname{ess} G$, 2. $I(G) \cong I(T)$ as abelian groups, 3. $Q \not\subseteq I(G)$. The condition $T \operatorname{ess} G$ is characterized if T is a summand or if G is algebraically compact. If T is bounded or if T is a p-group, $T^{1} = (0)$ and G is reduced cotorsion, T is not essential. In fact, for bounded Tthere is an \mathscr{C} isomorphism $I(G) \cong I(T) \oplus I(G/T)$. Some information is obtained on the p-basic subgroups of I(T) as a function of those of T. A condition is given for $I(T) \supseteq \bigoplus_{e} Q$. These last theorems specialize to $I(_{E}T)$, where E = End T.

Preliminaries. In the last fifteen years several authors have written papers concerning an abelian group G viewed as a module over \mathcal{C} , its ring of endomorphisms.

Let G be a mixed abelian group with maximal torsion subgroup T. In this paper we consider T as an \mathscr{C} submodule of G. We determine when T is superfluous in G and then study the more difficult question of determining when T is essential in G. (If $(0) \neq T \neq G$, it is easy to prove that T is neither essential nor superfluous as a Z submodule of G.)

The latter question leads to consideration of the injective hulls I(T), I(G)—taken with respect to \mathcal{C} .

Our notation, with minor exceptions, is that of [1].

1. T as a superfluous submodule of G. Henceforth, let G be a mixed abelian group, T = t(G) its torsion subgroup and $\mathscr{C} = \text{End } G$. To avoid stating the trivial cases of our results we always assume $(0) \neq T \neq G$. We begin by characterizing those mixed G for which $_{\mathscr{C}}T$ is superfluous in $_{\mathscr{C}}G$ ($T \ll G$). In our context $T \ll G$ if and only if whenever K is a fully invariant subgroup of G with K + T = G, then K = G.

LEMMA 1. Let $T = \bigoplus T_p$ be a decomposition of T into its p components. Then $T \ll G$ if and only if $T_p \ll G$, $\forall p$.