OPERATORS SATISFYING A G_1 CONDITION

C. R. PUTNAM

An operator T on a Hilbert space is said to be G_1 if $||(T-z)^{-1}||=1/\text{dist}(z, \sigma(T))$ for $z \notin \sigma(T)$ and completely G_1 if, in addition, T has no normal part. Certain results are obtained concerning the spectra of completely G_1 operators and of their real parts. It is shown in particular that there exist completely G_1 operators having spectra of zero Hausdorff dimension. Some sparseness conditions on the spectrum are given which assure that a G_1 operator has a normal part.

1. Introduction. All operators considered in this paper will be bounded (linear) on a Hilbert space \S of elements x. For any such operator T it is well-known (and due to Wintner [26]) that

$$||(T-z)^{-1}|| \geq 1/\operatorname{dist}(z, \sigma(T))$$

for $z \notin \sigma(T)$ and $||(T-z)^{-1}|| \leq 1/\text{dist}(z, W^{-}(T))$ for $z \notin W^{-}(T)$, where $\sigma(T)$ denotes the spectrum of T and $W^{-}(T)$ denotes the (convex) closure of the numerical range $W(T) = \{(Tx, x): ||x|| = 1\}$. An operator T is said to be G_1 (or to satisfy a G_1 condition, or to be of class G_1) if

(1.1)
$$||(T-z)^{-1}|| = 1/\operatorname{dist}(z, \sigma(T)) \quad \text{for} \quad z \notin \sigma(T) \; .$$

For instance, (1.1) holds for operators T which are normal $(T^*T - TT^* = 0)$, more generally, for those which are subnormal (T has a normal extension on a larger Hilbert space), and still more generally, for hyponormal operators $(T^*T - TT^* \ge 0)$. The inclusions indicated here,

(1.2) normals \subset subnormals \subset hyponormals \subset (G₁),

are all proper and, needless to say, the simple stratification (1.2) can be interstitially (and endlessly) refined. In this connection, see the brief survey in Putnam [16].

An operator T will be called completely G_1 if T is G_1 and if, in addition, T has no normal part, that is, T has no reducing subspace on which it is normal. Similarly, one has corresponding definitions of completely subnormal or completely hyponormal operators. It is well-known that every compact set of the plane is the spectrum of some normal operator. Moreover, necessary and sufficient conditions are known in order that a compact set be the spectrum of a completely subnormal operator (Clancey and Putnam [4]) or of a completely