ONE-PARAMETER SEMIGROUPS OF ISOMETRIES INTO H^p

EARL BERKSON

In this paper we explicitly describe all strongly continuous one-parameter semigroups $\{T_i\}$ of isometries of $H^p(D)$ into $H^p(D)$, where $1 \leq p < \infty$, $p \neq 2$, and D is the unit disc |z| < 1 in the complex plane C. It turns out (Theorem (1.6)) that for each t, $T_t = \phi_t U_t$, where U_t is a surjective isometry and ϕ_t is an inner function (the families $\{\phi_t\}$ and $\{U_t\}$ are uniquely determined provided $\{U_t\}$ is suitably normalized). The nature of the family $\{\phi_t\}$ depends on the set of common fixed points of the family $\{U_t\}$. If there is exactly one common fixed point in D, then $\{T_t\}$ must consist of surjective isometries $(\S 4)$; otherwise $\{T_t\}$ consists of surjective isometries only in very special cases $(\S S, 2, 5)$. The families $\{\phi_t\}$ are explicitly described in this paper.

1. Preliminaries. The linear isometries of H^p into H^p were characterized by Forelli [7, Theorem 1]. For convenience we quote here a part of the statement of Forelli's theorem.

THEOREM. Let T be a linear isometry of H^p into H^p , $1 \leq p < \infty$, $p \neq 2$. Then T has a unique representation

(1.1)
$$Tf = Ff(\phi), \text{ for all } f \in H^p,$$

where F is analytic on D, and ϕ is a nonconstant inner function.

Let R be the set of real numbers, and R^+ be $\{t \in R : t \ge 0\}$. Let $\{T_t\}, t \in R^+$, be a strongly continuous one-parameter semigroup of isometries of H^p into H^p , $1 \le p < \infty$, $p \ne 2$. For each $t \in R^+$, let F_t and ϕ_t be as in the representation (1.1) for T_t . From the identity $T_{s+t} = T_s T_t$ we get for all $s, t \in R^+$:

$$(1.2) \qquad \qquad \phi_{s+t} = \phi_s \circ \phi_t$$

(1.3)
$$F_{s+t} = F_s F_t(\phi_s)$$

where " \circ " denotes composition of maps. Let Z be the identity map, Z(z) = z. Obviously $F_t = T_t \mathbf{1}$, and $T_t Z = F_t \phi_t$. It follows by strong continuity that if $u \in \mathbf{R}^+$, $z_0 \in D$, and $F_u(z_0) \neq 0$, then $\phi_t(z_0) \rightarrow \phi_u(z_0)$ as $t \rightarrow u$. From this and the fact that $\{\phi_t: t \in \mathbf{R}^+\}$ is normal, we find that $t \mapsto \phi_t$ is continuous from \mathbf{R}^+ to the usual metric space of all analytic functions on D. Using this and the pointwise equicontinuity of $\{\phi_t: t \in \mathbf{R}^+\}$, we infer that $\phi_t(z)$ is a continuous function of (t, z)