ONE-PARAMETER SEMIGROUPS OF ISOMETRIES INTO H^{p}

Earl Berkson

Abstract

In this paper we explicitly describe all strongly continuous one-parameter semigroups $\left\{T_{t}\right\}$ of isometries of $H^{p}(D)$ into $H^{p}(D)$, where $1 \leqq p<\infty, p \neq 2$, and D is the unit disc $|z|<1$ in the complex plane C. It turns out (Theorem (1.6)) that for each $t, T_{t}=\psi_{t} U_{t}$, where U_{t} is a surjective isometry and ψ_{t} is an inner function (the families $\left\{\psi_{t}\right\}$ and $\left\{U_{t}\right\}$ are uniquely determined provided $\left\{U_{t}\right\}$ is suitably normalized). The nature of the family $\left\{\psi_{t}\right\}$ depends on the set of common fixed points of the family of Möbius transformations of the disc associated with the family $\left\{U_{t}\right\}$. If there is exactly one common fixed point in D, then $\left\{T_{t}\right\}$ must consist of surjective isometries (§4); otherwise $\left\{T_{t}\right\}$ consists of surjective isometries only in very special cases ($\S \S 2,5)$. The families $\left\{\psi_{t}\right\}$ are explicitly described in this paper.

1. Preliminaries. The linear isometries of H^{p} into H^{p} were characterized by Forelli [7, Theorem 1]. For convenience we quote here a part of the statement of Forelli's theorem.

Theorem. Let T be a linear isometry of H^{p} into $H^{p}, 1 \leqq p<$ $\infty, p \neq 2$. Then T has a unique representation

$$
\begin{equation*}
T f=F f(\phi), \text { for all } f \in H^{p} \tag{1.1}
\end{equation*}
$$

where F is analytic on D, and ϕ is a nonconstant inner function.
Let \boldsymbol{R} be the set of real numbers, and \boldsymbol{R}^{+}be $\{t \in \boldsymbol{R}: t \geqq 0\}$. Let $\left\{T_{t}\right\}, t \in \boldsymbol{R}^{+}$, be a strongly continuous one-parameter semigroup of isometries of H^{p} into $H^{p}, 1 \leqq p<\infty, p \neq 2$. For each $t \in \boldsymbol{R}^{+}$, let F_{t} and ϕ_{t} be as in the representation (1.1) for T_{t}. From the identity $T_{s+t}=T_{s} T_{t}$ we get for all $s, t \in \boldsymbol{R}^{+}$:

$$
\begin{gather*}
\phi_{s+t}=\phi_{s} \circ \dot{\phi}_{t} \tag{1.2}\\
F_{s+t}=F_{s} F_{t}\left(\phi_{s}\right),
\end{gather*}
$$

where " \circ " denotes composition of maps. Let Z be the identity map, $Z(z)=z$. Obviously $F_{t}=T_{t} 1$, and $T_{t} Z=F_{t} \phi_{t}$. It follows by strong continuity that if $u \in \boldsymbol{R}^{+}, z_{0} \in D$, and $F_{u}\left(z_{0}\right) \neq 0$, then $\phi_{t}\left(z_{0}\right) \rightarrow \phi_{u}\left(z_{0}\right)$ as $t \rightarrow u$. From this and the fact that $\left\{\phi_{t}: t \in \boldsymbol{R}^{+}\right\}$is normal, we find that $t \mapsto \phi_{t}$ is continuous from \boldsymbol{R}^{+}to the usual metric space of all analytic functions on D. Using this and the pointwise equicontinuity of $\left\{\phi_{t}: t \in \boldsymbol{R}^{+}\right\}$, we infer that $\phi_{t}(z)$ is a continuous function of (t, z)

