NATURALLY INTEGRABLE FUNCTIONS

LESTER E. DUBINS AND DAVID MARGOLIES

A bounded function f defined on an amenable group G is *naturally integrable* if, for every pair of left-invariant means μ and $\mu', \mu(f) = \mu'(f)$. If G is the additive group of integers, then (i) f is naturally integrable if, and only if,

$$\lim n^{-1} \Sigma f(j+i) (1 \leq i \leq n)$$

exists uniformly in j, and (ii) the associated natural measure ν is convex; that is, for every pair of naturally measurable sets of integers E_0 and E_1 with $E_0 \subset E_1$, there is a monotone family of naturally measurable sets $E_t(0 \leq t \leq 1)$ such that $\nu(E_t)(0 \leq t \leq 1)$ is a closed interval. Analogous results hold for the presently known amenable groups.

An order-preserving linear functional μ —or integral—defined on the space B(G) of bounded, real-valued functions defined on a group G, is a (left)-invariant mean if $\mu(c) = c$ for all constants c and if

(1)
$$\mu f = \int f(xy) d\mu(y)$$

for all $x \in G$; and G is *amenable* if such a μ exists.

If $\mu f = \mu' f$ for all invariant means μ and μ' , then f is (left) naturally integrable. This section is concerned with characterizing the set, \mathcal{N} , of left naturally integrable functions. As a preliminary, a necessary and sufficient condition for G to be amenable will be given.

For each finite subset α of G and each $f \in B(G)$, the convolution of α with $f, \alpha * f$ is defined by

$$(2) \qquad (\alpha * f)(y) = \frac{1}{|\alpha|} \sum f(xy)(x \in \alpha)$$

where $|\alpha|$ is the cardinality of α . Plainly, for any invariant μ ,

(3)
$$\mu f \leq \overline{\alpha * f}$$
, for each α ,

where \overline{f} is the supremum of f.

Summarizing,

$$(4) \qquad \qquad \mu f \leq p(f)$$

where

(5)
$$p(f) = \inf_{\alpha} \overline{\alpha * f}.$$