REGULARITY OF CAPILLARY SURFACES OVER DOMAINS WITH CORNERS

LEON SIMON

Using the usual mathematical model (capillary surface equation with contact angle boundary condition) we discuss regularity of the equilibrium free surface of a fluid in a cylindrical container in case the container cross-section has corners.

It is shown that good regularity holds at a corner if the "corner angle" θ satisfies $0 < \theta < \pi$ and $\theta + 2\beta > \pi$, where $0 < \beta \le \pi/2$ is the contact angle between the fluid surface and the container wall.

It is known that no regularity holds in case $\theta + 2\beta < \pi$, hence only the borderline case $\theta + 2\beta = \pi$ remains open.

We here want to examine the regularity of solutions of capillary surface type equations (subject to contact angle boundary conditions) on domain $\Omega \subset \mathbf{R}^2$ in a neighbourhood of a point of $\partial \Omega$ where there is a corner.

To be specific let Ω (as depicted in the diagram) be a region contained in $D_R = \{x \in \mathbb{R}^2 : |x| < R\}$ (R > 0 given) such that $\partial \Omega$ consists of a circular segment of ∂D_R together with two compact Jordan arcs γ_1, γ_2 such that $\gamma_1 \cap \gamma_2 = \{0\}$. γ_1, γ_2 are supposed to be $C^{1,\alpha}$ for some $0 < \alpha < 1$, and to meet at 0 with angle (measured in Ω) $\theta, 0 < \theta < \pi$. We also suppose (without loss of generality, since we can always take a smaller R) that γ_i intersects ∂D_{ρ} in a single point for each $i = 1, 2, 0 < \rho < R$.

Then we look at (weak) $C^{1,\alpha}(\overline{\Omega} \sim \{0\})$, solutions of the equation

(0.1)
$$\sum_{i=1}^{2} D_i \left(\frac{D_i u}{\sqrt{1 + |Du|^2}} \right) = H(x, u) \text{ on } \Omega,$$

where H is a locally bounded measurable function on $\overline{\Omega} \times \mathbf{R}$.

It is assumed that a contact angle boundary condition holds; to be precise, we suppose