GROUPS OF SQUARE-FREE ORDER ARE SCARCE

Michael E. Mays

Abstract

We devise an upper bound for $B(n)$, the number of nonisomorphic groups whose orders are square-free and no larger than n, and a lower bound for $T(n)$, the number of nonisomorphic groups whose orders are no larger than n. It is then noted that $B(n)=o(T(n))$.

An open problem is to find a formula for $N(n)$, the number nonisomorphic groups of order n. Balash [1] discovered such a formula in the special case where n is square-free, and Higman [4] and Sims [6] developed an asymptotic formula for the number of groups of order a power of a prime. In this paper we use Balash's result to determine an upper bound for $B(n)$, where

$$
B(n)=\sum_{\substack{k \leq n \\ k \text { square-free }}} N(k),
$$

and the work of Higman and Sims to bound $T(n)$, given by

$$
T(n)=\sum_{k \leq n} N(k),
$$

from below.
Higman's result, as refined by Sims, is

Lemma 1. Let $A=A(n, p)$ be defined by $\log _{p}\left(N\left(p^{n}\right)\right)=A n^{3}$. Then $A=2 / 27+O\left(n^{-1 / 3}\right)$.

Higman originally offered $2 / 27$ as the function in the lower bound for A with error term $O\left(n^{-1}\right)$ and $2 / 15$ in the upper bound. Sims reduced the upper bound to $2 / 27+O\left(n^{-1 / 3}\right)$. The lower bound is all we need, and the constant is not important as long as it is positive.

Theorem 1. There exists a positive constant c such that

$$
T(n) \gg n^{c \log ^{2} n} .
$$

Proof. Let $2^{m}<n \leqq 2^{m+1}$. Then for $n>1$,

$$
T(n) \geqq T\left(2^{m}\right) \gg 2^{k m^{3}} \geqq n^{c \log ^{2} n}
$$

Murty and Murty [5] show that $T(n) \gg n \log \log \log n$, which is enough to conclude, with a result of Erdös and Szekeres [2], that abelian groups are scarce. They then ask about nilpotent groups. Their lower bound grows more slowly than n^{2}, whereas the bound

