ON THE HOMOMORPHIC AND ISOMORPHIC EMBEDDINGS OF A SEMIFLOW INTO A RADIAL FLOW

MICHAEL EDELSTEIN

It is the main purpose of this paper to prove the following two theorems.

THEOREM I. (Isomorphism) Let (X, \mathbb{R}^+, f) be a semiflow on a separable metric space (X, d), having the properties:

(i) there is an $\omega \in X$ such that, for each neighborhood U of ω , there is a $T \in \mathbf{R}^+$ with $f[X, t] \subset U$ for all $t \ge T$;

(ii) for each $t \in {\pmb{R}}^+, f(\cdot,t)$ is a homeomorphism of X onto a closed subspace of X.

Then (X, \mathbb{R}^+, f) is isomorphic to a radial semiflow on a subset of the Hilbert Cube in l^2 .

THEOREM II. (Homomorphism) If (X, \mathbb{R}^+, f) satisfies the hypotheses of Theorem I, with (i) replaced by

(i') $\cap \{f[X, t]: t \ge 0\} = \{\omega\}$ for some $\omega \in X$, then $\{X, \mathbb{R}^+, f\}$ is homomorphic to a radial semiflow on a subset of the Hilbert Cube C and the subsemiflow induced on $X/\{\omega\}$ is isomorphic to a radial semiflow in C.

1. Introduction. Let X be a nonempty subset of a normed linear space and suppose that, with $0 < \lambda < 1$,

(1)
$$f(x, t) = \lambda^t x \quad ((x, t) \in X \times R)$$

The triple (X, \mathbf{R}, f) , with f as above, determines a dynamical system or a flow (cf. [4], [5]) on X such that the semitrajectory of each $x \neq 0$ is a line segment joining x with the origin 0. The terms "a radial flow" or "a radial dynamical system" seem appropriate. Similarly, with \mathbf{R} replaced by \mathbf{R}^+ , the nonnegative reals, we refer to (X, \mathbf{R}^+, f) as a radial semiflow, or a radial semidynamical system. By a homomorphic (isomorphic) embedding of (X, \mathbf{R}, f) into (Y, \mathbf{R}, g) we understand a one-one continuous mapping (a homeomorphism) h of X into Y such that

$$h(f(x, t)) = g(h(x), t) \ ((x, t) \in X \times \mathbf{R}) \ .$$

A similar definition applies to semiflows. Thus, to say that (X, \mathbb{R}^+, f) is isomorphic to a radial semiflow means that a homeomorphism h of X into a normed linear space exists such that

$$(2) h(f(x, t)) = \lambda^t h(x) \ ((x, t) \in X \times \mathbf{R}^+) .$$

In a recent paper L. Janos [3] proved that a semiflow (X, \mathbb{R}^+, f)