THE ASYMMETRIC PRODUCT OF THREE HOMOGENEOUS LINEAR FORMS

A. C. Woods

Let $L_{i}=\sum_{j=1}^{\hat{s}} a_{i j} x_{j}, i=1,2,3$, be three linear forms in the variables x_{1}, x_{2}, x_{3} with real coefficients $\alpha_{i j}$. A theorem of Davenport asserts that, if $\left|\operatorname{det}\left(\alpha_{i j}\right)\right|=7$, then there exist integers u_{1}, u_{2}, u_{3}, not all zero, such that

$$
\left|\prod_{i=1}^{3} L_{i}\left(u_{1}, u_{2}, u_{3}\right)\right| \leqq 1
$$

Under the same hypothesis, W. H. Adams has asked whether, given a positive real number u, there exist integers u_{1}, u_{2}, u_{3}, not all zero, such that

$$
-u^{-1} \leqq L_{1}\left(u_{1}, u_{2}, u_{3}\right) L_{2}\left(u_{1}, u_{2}, u_{3}\right)\left|L_{3}\left(u_{1}, u_{2}, u_{3}\right)\right| \leqq u
$$

Our objective is to prove this conjecture.
Davenport gave several proofs of his theorem [3], and other proofs have been given by Chalk and Rogers [2] and Mordell [8]. Isolation results, notably those of Davenport [6] and SwinnertonDyer [10], show that Adams conjecture is true for real u in some open interval containing 1.

The set of points (L_{1}, L_{2}, L_{3}) in R_{3}, formed as the variables range over all integral values, is a lattice Λ of determinant $d(\Lambda)=$ $\left|\operatorname{det}\left(a_{i j}\right)\right|$. In terms of Λ, our result is as follows.

Theorem. If $d(\Lambda)=7$, then there exists a point $\left(x_{1}, x_{2}, x_{3}\right)$ of Λ, other than the origin, such that

$$
-u^{-1} \leqq x_{1} x_{2}\left|x_{3}\right| \leqq u
$$

with the equality sign being necessary only if $u=1$.
The method of proof is the projective one due to Davenport [3]. We begin with three lemmas.

Lemma 1. If x, y, z, t are real nuwbers with $1<t^{2} \leqq 1.9$, such that the inequality

$$
\begin{equation*}
-t^{2}<(n+x)(n+y)|n+z|<1 \tag{1}
\end{equation*}
$$

is not solvable in integers n, then

$$
\begin{equation*}
\varphi=(x-y)^{2}+(y-z)^{2}+(z-x)^{2}>14 t \tag{2}
\end{equation*}
$$

We note that this is a generalization of a lemma due to

