SOLUBILITY OF FINITE GROUPS ADMITTING A FIXED-POINT-FREE AUTOMORPHISM OF ORDER rst I

Peter Rowley

The 'fixed-point-free automorphism conjecture' asserts that if a finite group G admits a fixed-point-free automorphism group A (and, if A is noncyclic, further suppose that $(|G|,|A|)=1$), then G is soluble. This paper is the first in a four part series, which considers the above conjecture when A is cyclic of order $r s t$ where r, s and t are distinct prime numbers.

1. Introduction. Suppose G is a finite group. For A a subgroup of the automorphism group of G we say that A acts fixed-point-freely upon G if and only if $C_{G}(A)=\{g \in G \mid \alpha(g)=g, \forall a \in A\}=\{1\}$. When $A=\langle\alpha\rangle$ is cyclic we sometimes say α acts fixed-point-freely upon G.

Let r, s and t denote distinct prime numbers. The main result to be proved here is

Theorem 1.1. A finite group which admits a coprime fixed-point-free automorphism of order rst is soluble.

In [15] the above result is obtained with the additional assumption that rst is a non-Fermat number (for the definition of a nonFermat number see $\S 4$). The main result of [15] has been further extended in [17] where the 'fixed-point-free automorphism conjecture' is established for automorphisms whose order is a non-Fermat squarefree number. The 'fixed-point-free automorphism conjecture' asserts the following.

If a finite group G admits a fixed-point-free automorphism group A (and, if A is noncyclic, further suppose that $(|G|,|A|)=1$), then G is soluble.

References for other works which contribute to the solution of this problem may be found in [13] and [16].

We now review the strategy of the proof of Theorem 1.1. A substantial part of our arguments will be in the context of a minimal situation. So let the pair $(G,\langle\alpha\rangle)$ be a counterexample to Theorem 1.1 chosen so that $|G|+|\langle\alpha\rangle|$ is minimal. Lemma 3.13 demonstrates, in such a group, the existence of certain α-invariant nilpotent Hall subgroups. Let L and M denote (respectively) α-invariant nilpotent Hall λ - and μ-subgroups of G. By (2.22) the number of maximal

