# EMBEDDINGS OF THE PSEUDO-ARC IN $E^{2}$ 

## Wayne Lewis


#### Abstract

In this paper, we show that there exists an embedding, $P_{s}$, of the pseudo-arc in the plane such that any two accessible points lie in distinct composants of $P_{s}$. We also show that there are $c=2^{\omega_{0}}$ distinct embeddings of the pseudo-arc in the plane, including for each positive integer $n$, one with exactly $n$ composants accessible. This answers some questions and a conjecture of Brechner.


For definitions and notation of chain (from $p$ to $q$ ), link, crooked, etc., see [1] and [7]. The links of our chains will always be the interiors of disks, and if two links of a chain intersect their intersection is the interior of a disk. When a chain $D$ refines a chain $C$, we shall always require that the closure of each link of $D$ be contained in a link of $C$.

First we describe the special embedding $P_{s}$, then prove Brechner's conjecture that any two distinct accessible points of $P_{s}$ lie in distinct composants. Let $C_{0}$ be a chain in $E^{2}$ from point $p$ to point $q$ which runs straight across from left to right horizontally. Let $C_{1}$ be a chain also running from $p$ to $q$ which is crooked in $C_{0}$ and descending, as in Figure 1. If we think of $C_{1}$ as straightened out

with $p$ on the left and $q$ on the right, then $C_{2}$ is a chain from $p$ to $q$ which is crooked in $C_{1}$ and ascending. We continue in this manner, alternating descending and ascending chains, so that $C_{i}$ runs from $p$ to $q$, mesh $\left(C_{i}\right)<1 / 2^{i}, C_{i+1}$ refines and is crooked in $C_{i}$, and $C_{i+1}$ is descending (ascending) in $C_{i}$ if $i$ is even (odd). The pseudo-arc $P_{s}$ is $\bigcap_{i \epsilon \omega_{0}} C_{i}^{*}$. (If $A$ is a collection of sets, $A^{*}$ is the union of $A$.)

Theorem. Any two distinct accessible points of $P_{s}$ are in distinct components.

Proof. We can draw horizontal rays to the left from $p$ and to

