THE SHEAF OF H^{p} -FUNCTIONS IN PRODUCT DOMAINS

SERGIO E. ZARANTONELLO

Let $W = W_1 \times W_2 \times \cdots \times W_n$ be a bounded polydomain in C^n such that the boundary of each W_i consists of finitely many disjoint Jordan curves. The correspondence that assigns to every relatively open polydomain V in \overline{W} (the closure of W) the Hardy space $\mathscr{H}^p(V \cap W)$, defines a sheaf \mathscr{H}^p_W over \overline{W} . This sheaf is locally determined in the sense that $\Gamma(\overline{W}, \mathscr{H}^p_W)$ is canonically isomorphic to $\mathscr{H}^p(W)$. In this paper we prove, for any $0 and all integers <math>q \ge 1$, that the cohomology groups $H^q(\overline{W}, \mathscr{H}^p_W)$ are trivial.

I. Introduction. The Hardy spaces $\mathscr{H}^{p}(U^{n})$, $0 , for the unit polydisc <math>U^{n}$, consist of all functions F which are holomorphic in U^{n} and satisfy

 $\sup_{0 < r < 1} \int_0^{2\pi} \cdots \int_0^{2\pi} |F(re^{i\theta_1}, \cdots, re^{i\theta_n})|^p d\theta_1 \cdots d\theta_n < +\infty \ .$

The observation ([9, Exercise 3.4.4(b), p. 52]) that $F \in \mathscr{H}^p(U^n)$ if and only if F is holomorphic and $|F|^p$ has an *n*-harmonic majorant in U^n , leads to a definition of Hardy spaces for arbitrary product domains; the requirement now being that F be holomorphic and $|F|^p$ have an *n*-harmonic majorant in the polydomain in question.

The symbol \mathscr{H}^p can thus be regarded as a presheaf on the polydomains in C^n . In this paper we concern ourselves with the sheaf induced by \mathscr{H}^p on the closure of a polydomain, and prove, under certain topological restrictions, that the corresponding cohomology groups are trivial.

Specifically, let $W = W_1 \times W_2 \times \cdots \times W_n$ be a bounded polydomain in C^n , and suppose each W_i is bounded by finitely many disjoint Jordan curves. The correspondence that assigns to each relatively open product domain V in \overline{W} (the closure of W) the linear space $\mathscr{H}^p(V \cap W)$, defines a sheaf $\widehat{\mathscr{H}}^p_W$ over \overline{W} . This sheaf is *locally determined*, i.e., $\Gamma(\overline{W}, \widehat{\mathscr{H}}^p_W)$ is canonically isomorphic to $\mathscr{H}^p(W)$. Our goal is to prove, for any such W, for 0 , $and for all integers <math>q \geq 1$, that the cohomology groups $H^q(\overline{W}, \widehat{\mathscr{H}}^p_W)$ are trivial.

In [8] A. Nagel proved similar results for a wide class of sheaves of holomorphic functions satisfying boundary conditions in polydomains. Although Nagel's methods can be applied to the sheaves $\widehat{\mathscr{H}}_{W}^{p}$ when 1 , the cases <math>0 present difficulties.Instead, as in the earlier papers [12], [13], we follow the approach