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NEW CONDITIONS FOR SUBNORMALITY

TAVAN T. TRENT

The purpose of this paper is to establish some new
characterizations of subnormality. One of these characteri-
zations is interesting, in that the conditions are applied to
"one vector at a time". This type of criterion is applied to
show that verifying subnormality can be reduced to con-
sidering the restrictions of the operator to its cyclic invari-
ant subspaces.

Denote the bounded linear operators on a separable Hubert space
H by B(H). An operator A e B(H) is called subnormal if there exists
an operator NeB(H@H) so that N is a normal operator, If 0 0 is
invariant for N and the restriction of N to H 0 0 equals A [8].
Some previous intrinsic characterizations of subnormality can be
found in [2], [7], [8]. Also a summary of these results appears in
[5].

An operator TeB(H) is called hyponormal if T*T - TT* ^ 0. It
is easy to see that T is hyponormal if and only if || Tx\\ ^ || JΓ*#|| for
all x in H. By a theorem of Douglas [6], this is equivalent to the
existence of an operator KeB(H) satisfying || JSΓ|| ^ 1 and T* = KT.
This fact was explicitly brought to the author's attention in [3].

Now the subnormal operators comprise a subset of the hyponor-
mal ones. Thus the question arises as to whether the contraction
operator K relating T* and T, as above, has properties which enable
one to tell whether T is not only hyponormal, but subnormal as well.
The following example shows that this is not the case. Let K, T,
and S denote Toeplitz operators with symbols z2, z + zz, and z, re-
spectively. (Here z stands for the identity function on the boundary
of the unit disc.) Then T* = KT and S* = KS, but S is subnormal
and T is not [cf. 1]. The example for T comes from [4].

However if S is subnormal then so is Sn for n = 0, 1, 2,
Hence for n = 0, 1, 2, there exist contractions Kn e B(H) with
S*n = KnS

n. Also it is known that there are hyponormal operators
T, which are not subnormal, with Tn hyponormal for n = 0, 1,
[13]. One might ask for conditions on the K% guaranteeing that if
T*n = KnT

n, n = 0, 1, , then T is subnormal. The following theo-
rem provides these conditions.

THEOREM 1. Let TeB(H). The following conditions on T are
equivalent.

(a) T is subnormal.
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