HYPERGEOMETRIC SERIES WITH A p-ADIC VARIABLE

Jack Diamond

Abstract

Hypergeometric series with a p-adic variable and ratios of such series, as originally considered by B. Dwork, are evaluated at $x=1$. Koblitz's conjecture on the limit of ratios of partial sums of hypergeometric series in the supersingular case is examined and a sufficient condition for the validity of this conjecture is given.

Introduction. In studying the zeta function of a hypersurface, B. Dwork was led to a study of ratios of p-adic hypergeometric series. In [4] and [5] he showed that under certain conditions these ratios had an analytic continuation beyond their disc of convergence. N. Koblitz has recently shown, [6], that the value of the continuation of $F(a, b ; 1 ; x) / F\left(a^{\prime}, b^{\prime} ; 1 ; x^{p}\right)$ at $x=1$ is $\Gamma_{p}(a) \Gamma_{p}(b) / \Gamma_{p}(a+b)$, where Γ_{p} is Morita's p-adic gamma function. Koblitz then conjectured that the ratio of the partial sums

$$
F_{s+1}(a, b ; 1 ; 1) / F_{s}\left(a^{\prime}, b^{\prime} ; 1 ; 1\right),
$$

where

$$
F_{s}(a, b ; c ; x)=\sum_{0 \leqq n<p^{s}} \frac{(a)_{n}(b)_{n}}{(c)_{n} n!} x^{n}
$$

has a limit as s approaches infinity for all a and b except for a special case in which the ratio is $0 / 0$. In addition, he gave an expected formula in terms of Γ_{p}.

In §1 we will calculate the value of the continuation of $F(a, b ; c ; x) / F\left(a^{\prime}, b^{\prime} ; c^{\prime} ; x^{p}\right)$ at $x=1$ for any appropriate a, b and c. In $\S 2$ we will consider the value at $x=1$ of hypergeometric series in which $c \in \Omega_{p}-\boldsymbol{Z}_{p}$ and of certain cases of generalized hypergeometric series. It will be seen, in particular, that Dixon's theorem and Saalschütz's formula hold for p-adic variables. In the last section we consider Koblitz's conjecture, generalized to allow for other c and x. While we give some examples where the conjecture is not quite true, the basic result is a condition on the size of $F_{s}\left(a^{\prime}, b^{\prime} ; c^{\prime} ; 1\right)$ which is sufficient to prove Koblitz's conjecture and its generalization to $c \neq 1$. The proof this theorem connects some of the results of $\S 2$, where c was not in \boldsymbol{Z}_{p}, with Dwork's work, in which $c \in \boldsymbol{Z}_{p}$.

1. Ratios of hypergeometric functions. If a, b and c are in \boldsymbol{Z}_{p}, then the hypergeometric series
