VECTOR-VALUED FUNCTIONS AS FAMILIES OF SCALAR-VALUED FUNCTIONS

ROBERT F. GEITZ AND J. J. UHL, JR.

One time-honored way of studying the properties of a vector measure F with values in a Banach space X, with dual X^* is to examine properties of the family of scalar measures $\{\langle x^*, F \rangle : x^* \in X^*, \|x^*\| \leq 1\}$. The purpose of this paper is to undertake a similar study for vector-valued functions. The first theorem proved in this vein was the classical Pettis measurability theorem which states that if X is a separable Banach space and f is an X-valued function such that $\langle x^*, f \rangle$ is measurable for each x^* in X^* , then f is a measurable function. What we propose to do is to take a bounded function f with values in X, form the associated family $\mathscr{F} = \{\langle x^*, f \rangle : x^* \in X^*, \|x^*\| \leq 1\}$ and study how measurability and integrability properties of fare reflected by topological properties of $\mathcal F$ in the spaces L_{∞} and $B(\Sigma)$.

Throughout this paper (Ω, Σ, μ) is a finite measure space and X is a Banach space with dual X^* . A function $f: \Omega \to X$ is $(\mu$ -) measurable if it is the a.e. limit of a sequence of simple functions. Standard arguments show that if μ is a Radon measure, then μ -measurability is equivalent to Lusin μ -measurability, which means that for every compact set $K \subset \Omega$ and for every number $\delta > 0$ there is a compact set $K' \subset K$ such that $\mu(K \setminus K') < \delta$ and f restricted to K' is continuous. The function f is weakly $(\mu$ -) measurable if $\langle x^*, f \rangle$ is measurable for all x^* in X^* . If X is the dual of a space Y, then f is weak*- $(\mu$ -) measurable if $\langle f, y \rangle$ is measurable for all y in Y. A function $f: \Omega \to X$ is weakly equivalent to a function $g: \Omega \to X$ if $\langle x^*, f \rangle = \langle x^*, g \rangle$ a.e., for every x^* in X^* . If X is the dual of space \mathscr{Y} , then f and g are weak*-equivalent if $\langle f, y \rangle = \langle g, y \rangle$ a.e., for all y in \mathscr{Y} .

A weakly measurable function $f: \Omega \to X$ is Pettis integrable if for each E in Σ there is an element $P - \int_{x} f d\mu$ in X such that

$$x^* \Big(P = \int_{E} f d\mu \Big) = \int_{E} x^* f d\mu \; .$$

1. The family $\{\langle x^*, f \rangle : ||x^*|| \leq 1\}$ as a subset of $L_{\infty}(\mu)$. In this section we shall study a bounded function $f: \Omega \to X$ in terms of topological properties of the associated family $\{\langle x^*, f \rangle : ||x^*|| \leq 1\}$ as a subset of the space $L_{\infty}(\mu)$.