A CHARACTERIZATION OF THE ADJOINT *L*-KERNEL OF SZEGÖ TYPE

SABUROU SAITOH

Let G be a bounded regular region in the complex plane and $\hat{L}(z, u)$ the adjoint L-kernel of Szegö kernel function $\hat{K}(z, \bar{u})$ on G. Then, for any analytic function h(z) on G with a finite Dirichlet integral, it is shown that the equation

holds. Furthermore, for any fixed nonconstant h(z), we show that the function $\hat{L}(z_1, z_2)$ on $G \times G$ is characterized by that equation in some class.

1. Introduction and statement of result. Let S denote an arbitrary compact bordered Riemann surface. Let W(z, t) be a meromorphic function whose real part is the Green's function g(z, t) with pole at $t \in S$. The differential id W(z, t) is positive along ∂S . For simplicity, we do not distinguish between points $z \in S \cup \partial S$ and local parameters z. For an arbitrary integer q and for any positive continuous function $\rho(z)$ on ∂S , let $H_{p,\rho}^q(S)[p \ge 1]$ be the Banach space of analytic differentials $f(z)(dz)^q$ on S of order q with finite norms

$$igg\{rac{1}{2\pi} \int_{ar{s}S} |\, f(z) (dz)^q \,|^{\,p}
ho(z) [\mathrm{id} \, W(z, \, t)]^{1-pq} \,igg\}^{1/p} \, < \, \infty \,$$
 ,

where f(z) means the Fatou boundary value of f at $z \in \partial S$. Let $K_{q,t,\rho}(z, \bar{u})(dz)^q$ be the reproducing kernel for $H^q_{2,\rho}(S)$ which is characterized by the reproducing property

$$f(u) = \frac{1}{2\pi} \int_{\partial S} f(z) (dz)^q \overline{K_{q,t,\rho}(z, \overline{u})(dz)^q} \rho(z) [\text{id } W(z, t)]^{1-2q}$$

for all $f(z) (dz)^q \in H^q_{2,\rho}(S)$.

See [9]. Let $L_{q,t,\rho}(z, u)(dz)^{1-q}$ denote the adjoint L-kernel of $K_{q,t,\rho}(z, \bar{u})(dz)^{q}$. The function $L_{q,t,\rho}(z, u)(dz)^{1-q}$ is a meromorphic differential on S of order 1-q with a simple pole at u having residue 1. Moreover,

(1.1)
$$K_{q,t,\rho}(z, \bar{u})(dz)^{q}\rho(z)[\text{id }W(z, t)]^{1-2q} = \frac{1}{i}L_{q,t,\rho}(z, u)(dz)^{1-q} \text{ along }\partial S.$$