AUTOMORPHISMS OF DIMENSION GROUPS AND THE CONSTRUCTION OF AF ALGEBRAS

CHAO-LIANG SHEN

Recent results of Edward G. Effros and the author show that if a dimension group is simple, totally ordered and with underlying group Z^n , then we can construct explicitly an AF C*-algebra with the given group as its K_0 by using the Jacobi-Perron algorithm. While the Jacobi-Perron algorithm breaks down for nontotally ordered groups, we study the construction problem via the consideration of automorphisms of the dimension group. We find the necessary and sufficient condition for a nontotally ordered simple dimension group $(Z^3, P_{(1,\alpha,\beta)})$ being stationary is that both α and β lie in the same quadratic number field. We also provide an explicit method for constructing Bratteli diagrams (and hence corresponding AF C*-algebras) for this type of groups.

Introduction. Since George Elliott introduced dimension theory for approximately finite C^* -algebras, considerable progress has been made in the study of AF C^* -algebras ([3], [4], [5], [6], [7], [8], [2]). In [5] and [6], Effros and the author raised the question of constructing AF algebras with given dimension groups as their K_0 , and answered it in the case when the given dimension group is simple totally ordered and with underlying group Z^n by using the Jacobi-Perron algorithm. Based on this and some examples of nontotally ordered simple dimension groups ([6, §4]). we conjectured for any simple dimension group G with underlying group Z^n , both that there exists an inductive sequence

$$Z^n \xrightarrow{\varphi_1} Z^n \xrightarrow{\varphi_2} Z^n \longrightarrow \cdots$$

where $\varphi_k \in \operatorname{GL}(n, \mathbb{Z})$ with nonnegative entries such that $\lim_{\longrightarrow} (\mathbb{Z}^n, \varphi_k) \cong G$ and that there exists effective methods for constructing these φ_k 's. In the meantime, our results have been applied by Cuntz, Krieger, Pimsner and Voiculescu ([2], [11]) to problems in topological Markov chains and to the irrational rotation C^* -algebras.

While the recent work of Riedel [12] supports the first part of conjecture, the construction problem still remains. Some dimension groups which are certainly worth first consideration are those having unique state (see [4] for definition). In this direction, as motivated by the work of Cuntz and Krieger, we ask the following question about existence and construction: