TORSION DIVISORS ON ALGEBRAIC CURVES

George R. Kempf

Abstract

Let D be a divisor on a smooth complete algebraic curve C such that the multiple $d D$ is rationally equivalent to zero for some positive integer d. We may write $D=D_{0}-D_{\infty}$ where D_{0} and D_{∞} are distinct effective divisors.

The purpose of this note is to prove the

Theorem. Assume that C is a curve with general moduli in characteristic zero. For such a divisor D, the cohomology $H^{1}(C$, $O_{c}\left(D_{0}+D_{\infty}\right)$) must be zero (equivalently $\left|K-D_{0}-D_{\infty}\right|$ is empty).

This theorem answers a question which arose in Sevin Recillas' unpublished work which motivated this note. This paper contains simple computational techniques for handling infinitisimal deformations of curves. I hope that these techniques may be useful for solving similar problems.

The theorem is well-known for the case $d=1$. For instance see Farkas' paper [2]. The recent work [1] contains further biliographic material and related material concerning deformations of mappings of curves into projective spaces.

1. First order deformations defined by principal parts. Let \mathscr{L} be an invertible sheaf on a smooth curve C. For any point c of $C, \operatorname{Prin}_{c}(\mathscr{L}) \equiv \operatorname{Rat}(\mathscr{L}) / \mathscr{L}_{c}$ measures the principal (polar) part of the rational sections of \mathscr{L}. Let $\operatorname{Prin}(\mathscr{L})$ be the space of principal parts, $\oplus \operatorname{Prin}_{c}(\mathscr{L})$, where c runs through C. For a given principal part $p=\left(p_{c}\right)$ in $\operatorname{Prin}(\mathscr{L})$, the support, $\operatorname{supp}(p)$, is the set of c in C with $p_{c} \neq 0$.

As in [3], we have a natural exact sequence

$$
0 \longrightarrow \Gamma(C, \mathscr{L}) \longrightarrow \operatorname{Rat}(\mathscr{L}) \longrightarrow \operatorname{Prin}(\mathscr{L}) \longrightarrow H^{1}(\mathrm{C}, \mathscr{L}) \longrightarrow 0
$$

Let p_{c} be a principal part in $\operatorname{Prin}_{c}(\mathscr{L})$ with a pole of order one. By duality the image of p_{c} in $H^{1}(C, \mathscr{L})$ is zero if and only if each section of $\Omega_{c} \otimes \mathscr{L}^{\otimes-1}$ vanishes at c. Consequently, if $H^{1}(C, \mathscr{L}) \neq 0$ (i.e., there is a nonzero such section), the cohomology class of p_{c} is nonzero for all but a finite number of points c.

Let $\Theta_{C}=\Omega_{C}^{\otimes-1}$ be the sheaf of regular vector fields on C. For any principal part X in $\operatorname{Prin}\left(\Theta_{C}\right)$, we want to define a deformation C_{X} of C over $T=\operatorname{Spec}(k[\delta])$, where $k[\delta]$ is the ring of dual numbers $k[t] /\left(t^{2}\right)$. First note that, if f is a rational function which is regular at each point of $\operatorname{supp}(X)$, then $X(f)$ makes sense in an obvious way

