SYMMETRIC SHIFT REGISTERS, PART 2

Jan Søreng

We study symmetric shift registers defined by

$$
\left(x_{1}, \cdots, x_{n}\right) \longrightarrow\left(x_{2}, \cdots, x_{n}, x_{n+1}\right)
$$

where $x_{n+1}=x_{1}+S\left(x_{2}, \cdots, x_{n}\right)$ and S is a symmetric polynomial over the field GF(2).

Introduction. In this paper we study symmetric shift registers over the field $\mathrm{GF}(2)=\{0,1\}$. In [2] we introduced the block structure of elements in $\{0,1\}^{n}$ and developed a theory about this block structure. In this paper we will use the results in [2] about the block structure to determine the cycle structure of the symmetric shift registers.

The symmetric shift register θ_{S} corresponding to $S\left(x_{2}, \cdots, x_{n}\right)$ where S is a symmetric polynomial, is defined by

$$
\theta_{S}\left(x_{1}, \cdots, x_{n}\right)=\left(x_{2}, \cdots, x_{n+1}\right) \quad \text { where } \quad x_{n+1}=x_{1}+S\left(x_{2}, \cdots, x_{n}\right) .
$$

q is the minimal period of $A \in\{0,1\}^{n}$ with respect to θ_{S} if q is the least integer such that $\theta_{S}^{q}(A)=A$. Then $A \rightarrow \theta_{S}(A) \rightarrow \cdots \rightarrow \theta_{S}^{q}(A)=A$ is called the cycle corresponding to A. We will for all S solve the following three problems:

1. Determine the minimal period for each $A \in\{0,1\}^{n}$.
2. Determine the possible minimal periods.
3. Determine the number of cycles corresponding to each minimal period.

Moreover, the problems will be solved in a constructive way, a way which will describe how the minimal periods and the number of cycles can be calculated. In [1] (see also [2]) we reduced all the problems to the case $S=E_{k}+\cdots+E_{k+p}$ where E_{i} is defined by

$$
E_{i}\left(x_{2}, \cdots, x_{n}\right)=1 \text { if and only if } \sum_{j=2}^{n} x_{j}=i
$$

In this paper we will only study $S=E_{k}+\cdots+E_{k+p}$.
I will now roughly describe the structure of the proof. First we need a definition. Suppose $\mathscr{M} \subset\{0,1\}^{n}$ is a set such that for all $A \in \mathscr{M}$ there exists an $i>0$ such that $\theta_{S}^{i}(A) \in \mathscr{M}$. Then we define Index: $\mathscr{M} \rightarrow\{1,2, \cdots\}$ and $\psi: \mathscr{M} \rightarrow \mathscr{M}$ in the following way:

Let $i>0$ be the least integer such that $\theta_{S}^{i}(A) \in \mathscr{M}$, then we define $\operatorname{Index}(A)=i$ and $\psi(A)=\theta_{S}^{i}(A)$.

In the proof we need only consider certain subsets \mathscr{M} which can be represented in a nice way. Each $A \in \mathscr{M}$ is uniquely deter-

