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SYMMETRIC SHIFT REGISTERS, PART 2

JAN SORENG

We study symmetric shift registers defined by

(Xl, ' " , Xn) > (X2t mmm>Xn, %n+l)

where xn+1 = x1 -f S(x2, , xn) and S is a symmetric polynomial
over the field GP(2).

Introduction* In this paper we study symmetric shift registers
over the field GF(2) = {0,1}. In [2] we introduced the block struc-
ture of elements in {0, l}n and developed a theory about this block
structure. In this paper we will use the results in [2] about the
block structure to determine the cycle structure of the symmetric
shift registers.

The symmetric shift register θs corresponding to S(x2, ••-,«»)
where S is a symmetric polynomial, is defined by

θsfru •••,&») = (α2, , «n+i) where xn+1 = xx + S(x2, , a?J .

q is the minimal period of i e {0, 1}* with respect to θs if q is the
least integer such that Θ%(A) = A. Then A -> ΘS(A) -•...-» 0|(A) = A
is called the cycle corresponding to A, We will for all S solve the
following three problems:

1. Determine the minimal period for each A e {0, 1}\
2. Determine the possible minimal periods.
3. Determine the number of cycles corresponding to each mini-

mal period.
Moreover, the problems will be solved in a constructive way, a

way which will describe how the minimal periods and the number
of cycles can be calculated. In [1] (see also [2]) we reduced all the
problems to the case S = Ek + + Ek+P where Et is defined by

Ei(x2, - , x J = 1 if and only if Σ χj — i
3=2

In this paper we will only study S = Ek + + Ek+P.
I will now roughly describe the structure of the proof. First

we need a definition. Suppose Λ€ C {0, l}n is a set such that for
all A e Λ there exists an i > 0 such that 0|(A) e ̂ C Then we define
Index: ^ —> {1, 2, •} and ψ: ^y£ -> ̂ ^ in the following way:

Let i > 0 be the least integer such that θs(A) e ̂ €, then we
define Index (A) = i and ^(A) = ̂ (A).

In the proof we need only consider certain subsets ^£ which
can be represented in a nice way. Each A e ̂ £ is uniquely deter-
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