QUASIDIAGONAL WEIGHTED SHIFTS

Abstract

RUSSELL SmUCKER

We characterize the quasidiagonality of a two-way weighted shift solely in terms of the weights. We use the characterization to show that quasidiagonality fails to be an invariant for similarity: an operator similar to the (unweighted) bilateral shift may fail to be quasidiagonal.

Introduction. We given necessary and sufficient conditions for the quasidiagonality of a two-way weighted shift. We use the characterization to show that quasidiagonality fails to be invariant for similarity.

A (bounded) operator A on a separable Hilbert space is quasidiagonal if there exists a sequence $\left\{P_{n}\right\}_{1}^{\infty}$ of orthogonal projections of finite rank such that $\left\{P_{n}\right\}$ converges strongly to 1 and $\left\{P_{n} A-A P_{n}\right\}$ converges uniformly to 0 . The only facts about quasidiagonal operators that we use in this paper are that each normal operator is quasidiagonal and that each compact perturbation of a quasidiagonal operator is again quasidiagonal. Both facts are proved in $[6, \S 4]$, where the concept was introduced.

Throughout this paper $\left\{e_{i}\right\}_{-\infty}^{+\infty}$ is a fixed basis for a complex Hilbert space, and $\left\{w_{i}\right\}_{-\infty}^{+\infty}$ is a fixed, bounded sequence of complex numbers. The operator B determined on the Hilbert space by the equations $B e_{i}=w_{i} e_{i+1}$ is a two-way weighted shift with weight sequence $\left\{w_{i}\right\}_{-\infty}^{+\infty}$. The main goal of the paper is to prove Theorems 1,2 , and 5 , which together characterize quasidiagonal weighted shifts solely in terms of their weight sequences.

1. Sufficiency.

Theorem 1. If the weight sequence of a two-way weighted shift has 0 as a limit point in both directions, then it is quasidiagonal.

Proof. Let $\left\{w_{i_{n}}\right\}_{n=-\infty}^{+\infty}$ be a subsequence of the weights that converges to 0 in both directions. For each positive integer n, define P_{n} to be the (orthogonal) projection onto the span of $\left\{e_{i_{-n}+1}, e_{i_{-n}+2}, \cdots\right.$, $\left.e_{i_{n}}\right\}$. It is easy to compute that $\left\|P_{n} B-B P_{n}\right\|$ is the larger of $\left|w_{i_{-n}}\right|$ and $\left|w_{i_{n}}\right|$; therefore $\left\|P_{n} B-B P_{n}\right\| \rightarrow 0$. The P_{n} are increasing, and the union of their ranges contains all the vectors in the basis; therefore $P_{n} \rightarrow 1$ strongly. By definition, consequently, B is quasidiagonal.

