RESOLUTION OF AMBIGUITIES IN THE EVALUATION OF CUBIC AND QUARTIC JACOBSTHAL SUMS

Richard H. Hudson and Kenneth S. Williams
If $p \equiv 1(\bmod 2 k)$ is a prime, the Jacobsthal sum $\Phi_{k}(D)$ is defined by

$$
\Phi_{k}(D)=\sum_{x=1}^{p-1}\left(\frac{x\left(x^{k}+D\right)}{p}\right) \quad(k=2,3, \cdots)
$$

It is shown how to evaluate $\Phi_{2}(D)$ and $\Phi_{3}(D)$ for any integer D.

1. Introduction. The Jacobsthal sum $\Phi_{k}(D)$ is defined for primes $p \equiv 1(\bmod 2 k)$ by

$$
\begin{equation*}
\Phi_{k}(D)=\sum_{x=1}^{p-1}\left(\frac{x\left(x^{k}+D\right)}{p}\right), \quad k=2,3, \cdots \tag{1.1}
\end{equation*}
$$

where (\bar{p}) is the Legendre symbol, and D is an integer not divisible by p. It is well-known (see for example [8: p. 104]) that

$$
\begin{equation*}
\Phi_{k}\left(D m^{k}\right)=\left(\frac{m}{p}\right)^{k-1} \Phi_{k}(D), \quad m \not \equiv 0 \quad(\bmod p) \tag{1.2}
\end{equation*}
$$

In this paper, we show how to resolve the sign ambiguities in the evaluations of $\Phi_{2}(D)$ and $\Phi_{3}(D)$. (For a discussion of Jacobsthal sums see, for example, [7], [14], [1].)
2. $k=2$. In this case $p \equiv 1(\bmod 4)$ and there are integers a and b such that

$$
\begin{equation*}
p=a^{2}+b^{2}, \quad a \equiv 1 \quad(\bmod 4), \quad b \equiv 0 \quad(\bmod 2), \tag{2.1}
\end{equation*}
$$

with a and $|b|$ unique. Relation (1.2) gives in this case

$$
\begin{equation*}
\Phi_{2}\left(D m^{2}\right)=\left(\frac{m}{p}\right) \Phi_{2}(D), \quad m \not \equiv 0 \quad(\bmod p) \tag{2.2}
\end{equation*}
$$

so that it suffices to consider $\Phi_{2}(D)$ for squarefree D. Choosing m such that $m^{2} \equiv-1(\bmod p)$ in (2.2), we have

$$
\begin{equation*}
\Phi_{2}(-D)=(-1)^{\langle p-1) / 4} \Phi_{2}(D) \tag{2.3}
\end{equation*}
$$

so that we may take D positive. Jacobsthal [7: pp. 240-241] has evaluated $\Phi_{2}(1)$. He has shown that

$$
\begin{equation*}
\Phi_{2}(1)=-2 a \tag{2.4}
\end{equation*}
$$

and thus, by (2.2), for any D with $(D / p)=+1$, say $D \equiv E^{2}(\bmod p)$,

