ISOPERIMETRIC EIGENVALUE PROBLEM OF EVEN ORDER DIFFERENTIAL EQUATIONS

Sui Sun Cheng

Abstract

This paper is concerned with the following eigenvalue problem $$
\left\{\begin{array}{l} x^{(2 n)}+(-1)^{n+1} \lambda p(t) x=0 \tag{1}\\ x^{(2 k)}(0)=0=x^{(2 k)}(1), \quad k=0,1, \cdots, n-1, \end{array}\right.
$$ where $p(t)$ is assumed to be positive and continuous in $[0,1]$. For the class of functions $q(t)$ which are equimeasurable to $p(t)$, we shall show that the rearrangement of $p(t)$ in symmetrically increasing order maximizes the least positive eigenvalue of (1), while the rearrangement of $p(t)$ in symmetrically decreasing order minimizes it.

Rearrangements of sets of numbers and functions are defined and investigated in detail in the book by Hardy, Littlewood and Pólya [11, Chapter X] and the book by Pólya and Szegö [18]. Using these notions, classes of nonhomogeneous strings, membranes, rods and plates with equimeasurable densities are considered in [3, 4, 5, 10] and the extremum of the principal frequencies are found for these classes. In particular, the above assertion has been proven by Beesack and Schwarz [5] and Fink [10] for $n=1$. For $n=2$, the proof is given by Banks [3]. Our proof will differ from those given for the special cases in that we will rely on some of the results in the theory of positive operators [12, 13, 14, 15, 16, 17] and certain rearrangement inequalities [18, 19]. All the required results will be explicitly stated in the sequel; the explanations of which, however, will be brief.
2. Rearrangement inequalities. Let h be a real function defined on a subset S of R^{n}, we shall denote the level set

$$
\{t \in S: h(t) \geqq c\}
$$

by $L(h, c)$. Two real functions $f(t)$ and $g(t)$ defined on [0, 1] are called similarly ordered if, for each pair of points t_{1}, t_{2} of [0,1], we have

$$
\left[f\left(t_{1}\right)-f\left(t_{2}\right)\right]\left[g\left(t_{1}\right)-g\left(t_{2}\right)\right] \geqq 0 ;
$$

f and g are called oppositely ordered if f and $-g$ are similarly ordered. If for each $c \in R$, the measure of $L(f, c)$ is equal to that of $L(g, c)$, then we say that f and g are equimeasurable. Let f, \dot{f} and \hat{f} be equimeasurable, and in addition let $\check{f}(t)$ and $(2 t-1)^{2}$ be

