REMARKS ON NONLINEAR CONTRACTIONS

Kun-Jen Chung

Throughout this paper, we assume that K is strongly normal, that $P=\{d(x, y) ; x, y \in X\}$, that \bar{P} denotes the weak closure of P, and that $P_{1}=\{z ; z \in \bar{P}$ and $z \neq \mathcal{O}\}$. The main result of this paper is the following.

Let (X, d) be a nonempty K-complete metric space, and let S, T be mappings of X into itself satisfying (1) and (2).

$$
\begin{equation*}
\phi(d(S x, T y)) \leqq d(x, y), \quad x \neq y \in X \tag{1}
\end{equation*}
$$

$$
\phi(t)>t \quad \text { for any } \quad t \in P_{1}
$$

where $\phi: P_{1} \rightarrow K$ is lower semicontinuous on P_{1}.
Then exactly one of the following three statements holds:
(a) S and T have a common fixed point, which is the only periodic point for both S and T;
(b) There exist a point $x_{0} \in X$ and an integer $p>1$ such that $S x_{0}=x_{0}=T^{p} x_{0}$ and $T x_{0} \neq x_{0}$;
(c) There exist a point $y_{0} \in X$ and an integer $q>1$ such that $S^{q} y_{0}=y_{0}=T y_{0}$ and $S y_{0} \neq y_{0}$.

Recently, J. Eisenfeld and V. Lakshmikantham [6, 7, 8], J. C. Bolen and B. B. Williams [1], S. Heikkila and S. Seikkala [9, 10], K. J. Chung [3, 4], M. Kwapisz [12] J. Wazewski [16] proved some fixed point theorems in abstract cones which extend and generalize many known results. In this paper, we extend some main results of A. Meir and E. Keeler [14] and C. L. Yen and K. J. Chung [17] to cone-valued metric spaces.
(I). Definitions. Let E be a normed space. A set $K \subset E$ is said to be a cone if (i) K is closed (ii) if $u, v \in K$ then $\alpha u+\tau v \in K$ for all $\alpha, \tau \geqq 0$, (iii) $K \cap(-K)=\{\mathscr{O}\}$ where \mathcal{O} is the zero of the space E, and (iv) $K^{0} \neq \phi$ where K^{0} is the interior of K. We say $u \geqq v$ if and only if $u-v \in K$, and $u>v$ if and only if $u-v \in K$ and $u \neq v$. The cone K is said to be strongly normal if there is a $\delta>0$ such that if $z=\sum_{i=1}^{n} b_{i} x_{i}, x_{i} \in K,\left\|x_{i}\right\|=1, b_{i} \geqq 0, \sum_{i=1}^{n} b_{i}=1$, implies $\|z\|>\delta$. The cone K is said to be normal if there is a $\delta>0$ such that $\left\|f_{1}+f_{2}\right\|>\delta$ for $f_{1}, f_{2} \in K$ and $\left\|f_{1}\right\|=\left\|f_{2}\right\|=1$. The norm in E is said to be semimonotone if there is a numerical constant M such that $\mathcal{O} \leqq x \leqq y$ implies $\|x\| \leqq M\|y\|$ (where the constant M does not depend on x and y).

Let X be a set and K a cone. A function $d: X \times X \rightarrow K$ is said to be a K-metric on X if and only if (i) $d(x, y)=d(y, x)$, (ii) $d(x, y)=\mathcal{O}$ if and only if $x=y$, and (iii) $d(x, y) \leqq d(x, z)+d(z, y)$.

