REMARKS ON NONLINEAR CONTRACTIONS

KUN-JEN CHUNG

Throughout this paper, we assume that K is strongly normal, that $P = \{d(x, y); x, y \in X\}$, that \overline{P} denotes the weak closure of P, and that $P_1 = \{z; z \in \overline{P} \text{ and } z \neq \mathcal{O}\}$. The main result of this paper is the following.

Let (X, d) be a nonempty K-complete metric space, and let S, T be mappings of X into itself satisfying (1) and (2).

(1)
$$\phi(d(Sx, Ty)) \leq d(x, y), \quad x \neq y \in X,$$

(2)
$$\phi(t) > t$$
 for any $t \in P_1$,

where $\phi: P_1 \to K$ is lower semicontinuous on P_1 .

Then exactly one of the following three statements holds: (a) S and T have a common fixed point, which is the only periodic point for both S and T;

(b) There exist a point $x_0 \in X$ and an integer p > 1 such that $Sx_0 = x_0 = T^p x_0$ and $Tx_0 \neq x_0$;

(c) There exist a point $y_0 \in X$ and an integer q > 1 such that $S^q y_0 = y_0 = T y_0$ and $S y_0 \neq y_0$.

Recently, J. Eisenfeld and V. Lakshmikantham [6, 7, 8], J. C. Bolen and B. B. Williams [1], S. Heikkila and S. Seikkala [9, 10], K. J. Chung [3, 4], M. Kwapisz [12] J. Wazewski [16] proved some fixed point theorems in abstract cones which extend and generalize many known results. In this paper, we extend some main results of A. Meir and E. Keeler [14] and C. L. Yen and K. J. Chung [17] to cone-valued metric spaces.

(I). Definitions. Let E be a normed space. A set $K \subset E$ is said to be a cone if (i) K is closed (ii) if $u, v \in K$ then $\alpha u + \tau v \in K$ for all $\alpha, \tau \geq 0$, (iii) $K \cap (-K) = \{\mathcal{O}\}$ where \mathcal{O} is the zero of the space E, and (iv) $K^0 \neq \phi$ where K^0 is the interior of K. We say $u \geq v$ if and only if $u - v \in K$, and u > v if and only if $u - v \in K$ and $u \neq v$. The cone K is said to be strongly normal if there is a $\delta > 0$ such that if $z = \sum_{i=1}^{n} b_i x_i$, $x_i \in K$, $||x_i|| = 1$, $b_i \geq 0$, $\sum_{i=1}^{n} b_i = 1$, implies $||z|| > \delta$. The cone K is said to be normal if there is a $\delta > 0$ such that $||f_1 + f_2|| > \delta$ for $f_1, f_2 \in K$ and $||f_1|| = ||f_2|| = 1$. The norm in E is said to be semimonotone if there is a numerical constant M such that $\mathcal{O} \leq x \leq y$ implies $||x|| \leq M ||y||$ (where the constant M does not depend on x and y).

Let X be a set and K a cone. A function $d: X \times X \to K$ is said to be a K-metric on X if and only if (i) d(x, y) = d(y, x), (ii) $d(x, y) = \mathcal{O}$ if and only if x = y, and (iii) $d(x, y) \leq d(x, z) + d(z, y)$.