A NOTE ON THE GAUSS CURVATURE OF HARMONIC AND MINIMAL SURFACES

Giorgio Talenti

Abstract

We present some inequalities for the Gauss curvature of embedded surfaces in euclidean 3 -space, which are either graphs of harmonic functions or minimal. The proofs exploit the following facts: (i) a partial differential equation constrains the curvature of the surfaces in question; (ii) the differential equation constrains in a significant way, via an isoperimetric inequality, the level lines of the curvature.

1. Introduction. Let u be a (real-valued) harmonic function of two (real) variables x and y, and let K be the Gauss curvature of the graph of u. The following lemma is the starting point of our arguments.

Lemma. The following equation

$$
\begin{equation*}
K\left(K_{x x}+K_{y y}\right)-K_{x}^{2}-K_{y}^{2}=8 K^{3} \tag{1}
\end{equation*}
$$

holds (here subscripts stand for differentiation, e.g., $K_{x}=\partial K / \partial x$, etc.).

Proof. The Gauss curvature of the graph of u is given by

$$
\begin{equation*}
K=\left(1+u_{x x}^{2}+u_{y}^{2}\right)^{-2}\left(u_{x x} u_{y y}-u_{x y}^{2}\right) . \tag{2}
\end{equation*}
$$

We have to show that formula (2) provides us with a kind of general solution of equation (1), i.e., formula (2) produces a solution to equation (1) whenever u is a harmonic function.

Indeed, our harmonic function can be represented (at least locally) as the real part

$$
\begin{equation*}
u(x, y)=\operatorname{Re} f(z)=\frac{1}{2}[f(z)+\overline{f(z)}] \tag{3}
\end{equation*}
$$

of some holomorphic function f of the complex variable $z=x+i y$. Using (2) and (3) one easily finds the following alternative formula

$$
\begin{equation*}
K=-\left(1+\left|f^{\prime}\right|^{2}\right)^{-2}\left|f^{\prime \prime}\right|^{2}, \tag{4}
\end{equation*}
$$

where primes denote differentiation with respect to z.
The right-hand side of (4) involves a holomorphic function (namely f^{\prime}) and the first derivative of it. We want to eliminate this holomorphic function from (4) and equations involving deriva-

