INDEPENDENCE OF NORMAL WEIERSTRASS POINTS UNDER DEFORMATION

R. F. LAX

Let X denote a compact Riemann surface of genus gand suppose $P \in X$. The Weierstrass nongaps at P are those positive integers n such that there exists a meromorphic function on X which has a pole of order n at P and is holomorphic everywhere else. The Weierstrass semigroup at P, which we denote by $\Gamma(P)$, is the additive semigroup consisting of 0 and the nongaps. A point P is a Weierstrass point if there exists a nongap less than g+1 at P and is a normal Weierstrass point if $\Gamma(P) = \{0, g, g+2, g+3, g+4, \cdots\}$. We consider here the following problem: Given a collection P_1, \dots, P_n of points on X, describe the infinitesimal variations of complex structure on X which preserve the Weierstrass semigroups at P_1, \dots, P_n . Our main result says, roughly speaking, that normal Weierstrass points deform as independently of each other as possible.

1. Let T_g denote the Teichmuller space for Teichmuller surfaces of genus g > 1 and let $\pi: V \to T_g$ denote the universal curve of genus g. Let \mathscr{W}_k^r , for $k = 2, \dots, 2g - 2$ and $r = 1, 2, \dots$, denote the closed complex subspaces of V of Weierstrass points of the universal curve which were defined in [1], [2]. These spaces may be described set-theoretically as follows:

1) for $k \leq g$, then

 $|\mathscr{W}_{k}^{r}| = \{(t, P) \in V: \text{ in the Weierstrass gap sequence at } P \in V_{t}, \text{ there are at least } r \text{ nongaps } \leq k\}.$

2) For $k \ge g$, then

 $|\mathscr{W}_{k}^{r}| = \{(t, P) \in V: \text{ in the Weierstrass gap sequence at } P \in V_{t}, \text{ there}$ are at least $r \text{ gaps } > k\}.$

If P is a point on a compact Riemann surface, let $\Gamma(P)$ denote the semigroup of Weierstrass nongaps at P. Let Γ be an additive subsemigroup of the nonnegative integers and suppose Γ has g gaps.

DEFINITION. Put $\mathscr{W}(\Gamma) = \{(t, P) \in V : \Gamma(P) = \Gamma\}.$

It is not hard to see that $\mathscr{W}(\Gamma)$ is a (possibly empty) open subset of a finite intersection of \mathscr{W}_{k}^{r} 's. Thus $\mathscr{W}(\Gamma)$ has the structure of a complex analytic subspace of V.

Suppose $(t, P) \in V$ and put $X = V_t$. Let c_1, \dots, c_{3g-3} denote Patt's local coordinates [3] on T_g centered at t. These coordinates arise as variation parameters used in performing local variations of structure around 3g - 3 generally chosen points on X. Let z be a