FIXED POINTS ON FLAG MANIFOLDS

HENRY H. GLOVER AND WILLIAM D. HOMER

When K is R, C, or H, let $U_{\kappa}(n)$ denote the group of $n \times n$ orthogonal, unitary, or symplectic matrices, respectively. If G is a closed connected subgroup of $U_{\kappa}(n)$ of maximal rank, then it is conjugate to a subgroup of the form $U_{\kappa}(n_1) \times U_{\kappa}(n_2) \times \cdots \times U_{\kappa}(n_k)$. A simple condition on the integers n_i is shown to be necessary for $U_{\kappa}(n)/G$ to have the fixed point property (that every self map has a fixed point). It is conjectured that this condition is also sufficient, and a proof is given for some cases.

For a partition $n = n_1 + n_2 + \cdots + n_k$ of a positive integer nand $K = \mathbf{R}$, \mathbf{C} , or \mathbf{H} , the corresponding generalized flag manifold $U_{\kappa}(n)/(U_{\kappa}(n_1) \times \cdots \times U_{\kappa}(n_k))$ will be denoted $KM(n_1, \cdots, n_k)$. We conjecture that $KM(n_1, \cdots, n_k)$ has the fixed point property if and only if n_1, \cdots, n_k are distinct integers and, when $K = \mathbf{R}$ or \mathbf{C} , at most one is odd. We prove that this condition is necessary and that it is sufficient, in addition to previously known cases, for the manifolds $KM(1, n_2, n_3)$ where n_3 is large relative to n_2 (and, when $K = \mathbf{R}$, in some other cases as well).

THEOREM 1. If $KM(n_1, n_2, \dots, n_k)$ has the fixed point property, then n_1, \dots, n_k are distinct integers and, if K = R or C, at most one is odd.

Proof. We can regard $M = CM(n_1, \dots, n_k)$ as the space of orthogonal direct sum decompositions $C^n = V_1 \bigoplus \dots \bigoplus V_k$, where V_m has dimension n_m over C. If $n_r = n_s$, interchanging the rth and sth summands defines a fixed point free self map of M.

For the rest of the proof, we define a conjugate linear transformation J of C^n and consider the associated self map f of M, which takes $V_1 \oplus \cdots \oplus V_k$ to $JV_1 \oplus \cdots \oplus JV_k$. If n = 2m, we regard C^n as H^m and take J to be multiplication by the quaternion j. Any subspace of C^n invariant under J has the structure of a vector space over H and so has even dimension as a vector space over C. Thus if at least one (and so necessarily at least two) of the integers n_1, \dots, n_k is odd, f has no fixed points.

If n = 2m + 1, we write $C^n = H^m \bigoplus C$ and take J to be multiplication by j on the first summand and complex conjugation on the second. If W is a subspace of C^n which is invariant under J, then its projection onto the first summand is invariant under multiplication by j and so has even dimension over C. Hence each odd