FIXED POINTS ON FLAG MANIFOLDS

Henry H. Glover and William D. Homer

Abstract

When K is $\boldsymbol{R}, \boldsymbol{C}$, or \boldsymbol{H}, let $U_{K}(n)$ denote the group of $n \times n$ orthogonal, unitary, or symplectic matrices, respectively. If G is a closed connected subgroup of $U_{K}(n)$ of maximal rank, then it is conjugate to a subgroup of the form $U_{K}\left(n_{1}\right) \times U_{K}\left(n_{2}\right) \times \cdots \times U_{K}\left(n_{k}\right)$. A simple condition on the integers n_{i} is shown to be necessary for $U_{K}(n) / G$ to have the fixed point property (that every self map has a fixed point). It is conjectured that this condition is also sufficient, and a proof is given for some cases.

For a partition $n=n_{1}+n_{2}+\cdots+n_{k}$ of a positive integer n and $K=\boldsymbol{R}, \boldsymbol{C}$, or \boldsymbol{H}, the corresponding generalized flag manifold $U_{K}(n) /\left(U_{K}\left(n_{1}\right) \times \cdots \times U_{K}\left(n_{k}\right)\right)$ will be denoted $K M\left(n_{1}, \cdots, n_{k}\right)$. We conjecture that $K M\left(n_{1}, \cdots, n_{k}\right)$ has the fixed point property if and only if n_{1}, \cdots, n_{k} are distinct integers and, when $K=\boldsymbol{R}$ or \boldsymbol{C}, at most one is odd. We prove that this condition is necessary and that it is sufficient, in addition to previously known cases, for the manifolds $K M\left(1, n_{2}, n_{3}\right)$ where n_{3} is large relative to n_{2} (and, when $K=\boldsymbol{R}$, in some other cases as well).

Theorem 1. If $K M\left(n_{1}, n_{2}, \cdots, n_{k}\right)$ has the fixed point property, then n_{1}, \cdots, n_{k} are distinct integers and, if $K=\boldsymbol{R}$ or \boldsymbol{C}, at most one is odd.

Proof. We can regard $M=\boldsymbol{C M}\left(n_{1}, \cdots, n_{k}\right)$ as the space of orthogonal direct sum decompositions $\boldsymbol{C}^{n}=V_{1} \oplus \cdots \oplus V_{k}$, where V_{m} has dimension n_{m} over \boldsymbol{C}. If $n_{r}=n_{s}$, interchanging the r th and s th summands defines a fixed point free self map of M.

For the rest of the proof, we define a conjugate linear transformation J of C^{n} and consider the associated self map f of M, which takes $V_{1} \oplus \cdots \oplus V_{k}$ to $J V_{1} \oplus \cdots \oplus J V_{k}$. If $n=2 m$, we regard \boldsymbol{C}^{n} as \boldsymbol{H}^{m} and take J to be multiplication by the quaternion j. Any subspace of C^{n} invariant under J has the structure of a vector space over \boldsymbol{H} and so has even dimension as a vector space over \boldsymbol{C}. Thus if at least one (and so necessarily at least two) of the integers n_{1}, \cdots, n_{k} is odd, f has no fixed points.

If $n=2 m+1$, we write $\boldsymbol{C}^{n}=\boldsymbol{H}^{m} \oplus \boldsymbol{C}$ and take J to be multiplication by j on the first summand and complex conjugation on the second. If W is a subspace of \boldsymbol{C}^{n} which is invariant under J, then its projection onto the first summand is invariant under multiplication by j and so has even dimension over \boldsymbol{C}. Hence each odd

