EXPONENTIAL DIOPHANTINE EQUATIONS

J. L. Brenner and Lorraine L. Foster

Contents

1. Introduction 263
2. Summary 265

3. Theorems Concerning Equations of the General Form $p^{a}+q^{b}=r^{c}+s^{d}$283
4. The Equations $1+2^{a}+7^{b}=3^{c}+5^{d}, 3^{a}+7^{b}=3^{c}+5^{d}+2 \ldots \ldots .286$

5. Problems and Conjectures 297
6. Index of $e D e$'s 299

Acknowledgment, References 300

We study equations in which the unknowns are the exponents. (Work in this field originated with C. St ϕ rmer and D. H. Lehmer. More recently, Leo J. Alex has extended their results; his work relates to classification of nonabelian simple groups.)
(i) For the equation $k+7^{a}=3^{c}+5^{d}, k=3^{b}, 5^{b}, 13^{b}$, or 17^{b}, and for many similar 4 -term equations, we find all integral solutions.
(ii) We find all integral solutions of $3^{a}+7^{b}=3^{c}+5^{d}+2$.
(iii) We prove that there are infinitely many odd m such that $m^{a}+7^{b}=3^{c}+5^{d}$ has only the solutions $(a, b, c, d)=$ $(0,0,0,0),(0,1,1,1)$.

1. Introduction. By an exponential Diophantine equation ($e D e$) we mean an equation in which the bases are (given or unknown) integers; the exponents are unknown integers. In this article the exponents are nonnegative as well. Examples are the equations

$$
\begin{aligned}
& 1+2^{a}+7^{b}=3^{c}+5^{d} \\
& 3^{a}+7^{b}=3^{c}+5^{d}+2
\end{aligned}
$$

(All solutions of these equations are determined in $\S 6$ of this article.)
Isolated examples of $e D e$'s occur very early in the history of the theory of numbers (Mersenne, Fermat). The equation $x^{y}=y^{x}$ is another hoary example. To compute accurately the logarithms of primes, Størmer [12] found all solutions of the equation $1+2^{a} 3^{b} 5^{c}=$ $2^{d} 3^{e} 5^{f}$; his method depended on the theory of Pell equations. Lehmer [8] refined Størmer's methods. This approach is still useful for computing the logarithm of a prime to high precision.

