THE CONNECTED COMPONENT OF THE IDELE CLASS GROUP OF AN ALGEBRAIC NUMBER FIELD

Midori Kobayashi

Abstract

We shall give another proof of Weil's theorem of the structure of the connected component of the idèle class group of an algebraic number field. Our proof is different from Artin's.

Let Q be the rational number field and k be an algebraic number field of finite degree over Q. We denote by C_{k} the idèle class group of k and D_{k} the connected component of unity of C_{k}. Let T denote the multiplicative group of all complex numbers of absolute value 1 with compact topology, R the additive group of the real numbers with usual topology, and S the Solenoid with compact topology.

Weil ([3]) has shown that D_{k} is isomorphic to $T^{r_{2}} \times R \times S^{r}$, by determining the structure of the dual D_{k}^{*}. Artin ([1]) has exhibited a system of representatives of idèle classes and given a different proof. In this paper we shall give another proof of the above Weil's theorem.

1. Let k be an algebraic number field which has r_{1} real infinite primes and r_{2} complex infinite primes. As usual we put $r=r_{1}+r_{2}-1$. Let I_{k} be the idèle group of k, C_{k} the idèle class group of k and D_{k} the connected component of unity of C_{k}. An idèle will be denoted by $\left(a_{v}\right)=\left(a_{\mathfrak{p}}, a_{\lambda}\right)$, where v runs all primes of k, \mathfrak{p} all finite primes and λ all infinite primes of $k\left(\lambda=1, \ldots, r_{1}+r_{2}\right)$. We shall agree that $\lambda\left(1 \leq \lambda \leq r_{1}\right)$ is real and $\lambda\left(r_{1}+1 \leq \lambda \leq r_{1}+r_{2}\right)$ is complex. Let us denote by σ_{λ} the embedding of k into the complex number field attached to an infinite prime λ. Then σ_{λ} with $1 \leq \lambda \leq r_{1}$ is a real embedding and σ_{λ} with $r_{1}+1 \leq \lambda \leq r_{1}+r_{2}$ a complex one.

For any topological group G, G^{*} denotes the character group of G. If χ is a character of C_{k}, i.e., a continuous homomorphism of C_{k} into T, we can regard it as a character of I_{k} which is trivial on principal idèles. If we restrict χ to the infinite part $R^{\times_{1}} C^{\times^{\prime 2}}$ of I_{k}, χ can be written as follows:

$$
\chi\left(\left(a_{\lambda}\right)\right)=\prod_{\lambda=1}^{r_{1}+r_{2}}\left(\frac{a_{\lambda}}{\left|a_{\lambda}\right|}\right)^{\delta_{\lambda}}\left|a_{\lambda}\right|^{\sqrt{-1} \varphi_{\lambda}}, \quad\left(a_{\lambda}\right) \in R^{\times^{\prime \prime}} C^{\times^{\prime 2}}
$$

where $f_{\lambda} \in Z$ (the rational integers), $\varphi_{\lambda} \in R\left(\lambda=1, \ldots, r_{1}+r_{2}\right)$, and $f_{1}, \ldots, f_{r_{1}}=0$ or 1 . Such f_{λ} and $\varphi_{\lambda}\left(\lambda=1, \ldots, r_{1}+r_{2}\right)$ are uniquely determined, so we say that χ is of type $\left(f_{\lambda}, \varphi_{\lambda}\right)$.

