RENORMING AND THE THEORY OF PHI-ACCRETIVE SET-VALUED MAPPINGS

DAVID J. DOWNING AND WILLIAM O. RAY

Let X and Y be Banach spaces, $\phi: X \to Y^*$ and $P: X \to 2^Y$; P is said to be strongly ϕ -accretive if there exists c > 0 so that $(w - v, \phi(x - y)) \ge c ||x - y||^2$ whenever $x, y \in X$ and $w \in Px, v \in Py$. Such mappings constitute a simultaneous generalization of monotone mappings (when $Y = X^*$) and accretive mappings (when Y = X). By applying a fixed point theorem of J. Caristi, it is shown that if P is strongly ϕ -accretive in a localized sense and if Y can be appropriately renormed, then, under suitable continuity and range restrictions, P is an open mapping. The results generalize a number of known theorems and indicate a firm connection between the theory of ϕ -accretive mappings and the renorming characteristics of the space Y.

1. Introduction. Let X and Y be Banach spaces with Y^* the dual of Y, and let $\phi: X \to Y^*$ be a mapping such that

(1.1)
$$\phi(X)$$
 is dense in Y^*

(1.2) for each $x \in X$ and each $\xi \ge 0$, $\|\phi(x)\| \le \|x\|$

and $\phi(\xi x) = \xi \phi(x)$.

A mapping P from X to Y is said to be strongly ϕ -accretive (e.g. [1] or [14]) if there is a constant c > 0 such that, for $x, u \in X$

$$(Px - Pu, \phi(x - u)) \ge c ||x - u||^2.$$

The ϕ -accretive mappings were introduced in an effort to unify the theories for monotone mappings (when $Y = X^*$) and for accretive mapping (when Y = X). While the theorems obtained for the monotone and accretive mappings are similar in character, the methods employed are technically distinct and the goal in the study of ϕ -accretive operators is to develop a methodology which is applicable to both classes of mappings. Fundamental progress in this direction has been realized by F. E. Browder (e.g. [1]-[4]); one of his basic results in Theorem B below.

THEOREM B ([4]). Let X and Y be Banach spaces with P: $X \rightarrow Y$ a strongly ϕ -accretive mapping. Suppose that one of the following two additional hypotheses holds:

(I) Y^* is uniformly convex and P is locally lipschitzian.