SOME POINCARÉ SERIES RELATED TO IDENTITIES OF 2×2 MATRICES

Patrick Halpin

Abstract

A partial solution to a problem of Procesi has recently been given by Formanek, Halpin, Li by determining the Poincare series of the ideal of two variable identities of $M_{2}(k)$. Two related results are obtained in this article.

A weak identity of $M_{n}(k)$ is a polynomial which vanishes identically on $s l_{n}$, the subspace of $M_{n}(k)$ of matrices of trace zero. We show that the Poincare series of the ideal of two variable weak identities of $M_{2}(k)$ is rational. In addition it is shown that the ideal of identities of upper triangular 2×2 matrices in an arbitrary finite number of variables has a rational Poincaré series. As an application we are able to determine this ideal precisely.

Introduction. Let $S=K\left\langle x_{1}, \ldots, x_{n}\right\rangle$ be the free associative algebra over k where k is any field of characteristic zero. S is naturally graded by giving x_{1} degree $(1,0, \ldots, 0), x_{2}$ degree $(0,1, \ldots, 0)$, etc. Denote by $S_{\left(i_{1}, \ldots, i_{n}\right)}$ the subspace of S generated by monomials of degree $\left(i_{1}, \ldots, i_{n}\right)$. If A is a homogeneously generated ideal of S then we associate a series to A, called the Poincaré series of A, via

$$
P(A)=\sum_{i_{1}, \ldots, i_{n} \geq 0} a\left(i_{1}, \ldots, i_{n}\right) s_{1}^{l_{1}} s_{2}^{l_{2}} \cdots s_{n}^{i_{n}}
$$

where $a\left(i_{1}, \ldots, i_{n}\right)=\operatorname{dim}_{k}\left(A \cap S_{\left(i_{1}, \ldots, i_{n}\right)}\right)$. In [1] Formanek, Halpin, Li showed that the Poincare series of the ideal of two variables identities of $M_{2}(k)$ is a rational function in s_{1} and s_{2}. In this article we obtain two related results.

A weak identity of $M_{n}(k)$ is a polynomial which vanishes upon substitution of elements of $\mathrm{sl}_{n}(k)$, where $\mathrm{sl}_{n}(k)$ denotes the subspace of $M_{n}(k)$ of matrices of trace zero. The notion of a weak identity was introduced by Razmyslov [2] in connection with the study of central polynomials. Let $T_{2}^{W}\left(x_{1}, x_{2}\right)$ denote the ideal of $k\left\langle x_{1}, x_{2}\right\rangle$ of weak identities of $M_{2}(k)$. In Section 1 we determine $P\left(T_{2}^{W}\left(x_{1}, x_{2}\right)\right)$ and find that it is again a rational function in s_{1} and s_{2}.

In §2 we consider the identities of the subalgebra of $M_{2}(k)$ consisting of upper triangular matrices. By restricting to upper triangular matrices we are able to obtain results more complete than those obtained in [1]. We

