NORMS ON F(X)

JO-ANN COHEN

It is well known that if $\|\cdot\cdot\|$ is a norm on the field F(X) of rational functions over a field F for which F is bounded, then $\|\cdot\cdot\|$ is equivalent to the supremum of a finite family of absolute values on F(X), each of which is improper on F. Moreover, $\|\cdot\cdot\|$ is equivalent to an absolute value if and only if the completion of F(X) for $\|\cdot\cdot\|$ is a field. We show that the analogous characterization of norms on F(X) for which F is discrete is impossible by constructing for each infinite field F, a norm $\|\cdot\cdot\|$ on F(X) such that F is discrete, $\|X\| < 1$, the completion of F(X) for $\|\cdot\cdot\|$ is a field, but $\|\cdot\cdot\|$ is not equivalent to the supremum of finitely many absolute values.

1. Introduction and basic definitions. Let R be a ring and let \mathfrak{T} be a ring topology on R, that is, \mathfrak{T} is a topology on R making $(x, y) \to x - y$ and $(x, y) \to xy$ continuous from $R \times R$ to R. A subset A of R is bounded for \mathfrak{T} if given any neighborhood U of zero, there exists a neighborhood V of zero such that $AV \subseteq U$ and $VA \subseteq U$. \mathfrak{T} is a *locally bounded topology* on R if there exists a fundamental system of neighborhoods of zero for \mathfrak{T} consisting of bounded sets.

We recall that a *norm* $\|\cdot\cdot\|$ on a ring *R* is a function from *R* to the nonnegative reals satisfying $\|x\| = 0$ if and only if x = 0, $\|x - y\| \le \|x\| + \|y\|$ and $\|xy\| \le \|x\| \|y\|$ for all *x* and *y* in *R*. If $\|\cdot\cdot\|$ is a norm on *R*, for each $\varepsilon > 0$ define B_{ε} by, $B_{\varepsilon} = \{r \in R: \|r\| < \varepsilon\}$. Then $\{B_{\varepsilon}: \varepsilon > 0\}$ is a fundamental system of neighborhoods of zero for a Hausdorff locally bounded topology $\mathfrak{T}_{\|\cdot\cdot\|}$ on *R*. Two norms on *R* are *equivalent* if they define the same topology. We note further that if $\|\cdot\cdot\|$ is a nontrivial norm on a field *K* (that is, $\mathfrak{T}_{\|\cdot\cdot\|}$ is nondiscrete), then a subset *A* of *K* is bounded for the topology defined by $\|\cdot\cdot\|$ if and only if *A* is bounded in norm.

It is classic that, to within equivalence, the only valuations on the field F(X) of rational functions over a field F that are improper on F are the valuations v_p , where p is a prime polynomial of F[X], and the valuation v_{∞} defined by the prime polynomial X^{-1} of $F[X^{-1}]$ ([1, Corollary 2, p. 94]). For each valuation v, the function $| \cdots |_v$ defined by $| y |_v = 2^{-v(y)}$ for all y in F(X) is an absolute value on F(X) for which F is discrete. In [2, Theorem 2] we showed that if $|| \cdots ||$ is a nontrivial norm on F(X) for which F is bounded, then $|| \cdots ||$ is equivalent to the supremum of finitely