ENDOSCOPIC GROUPS AND BASE CHANGE C/R

D. SHELSTAD

We consider a real reductive group G with complex points $G(\mathbf{C})$, Galois automorphism σ , and real points $G(\mathbf{R}) = \{g \in G(\mathbf{C}): \sigma(g) = g\}$. In general, an irreducible admissible representation Π of $G(\mathbf{C})$ equivalent to its Galois conjugate $\Pi \circ \sigma$ need not be a lift from $G(\mathbf{R})$, even if G is quasi-split over **R**. Following the results of L-indistinguishability we might expect this phenomenon to be related to the fact that σ -twisted conjugacy on $G(\mathbf{C})$ need not be "stable", and therefore attempt to match the various "unstable" combinations of σ -twisted orbital integrals on $G(\mathbf{C})$ with stable orbital integrals on certain groups $H(\mathbf{R})$. The principle of functoriality in the L-group would then suggest, with reservations in the nontempered case, a relation between the σ -twisted characters of representations of $G(\mathbf{C})$ fixed up to equivalence by σ and the "dual lifts" to $G(\mathbf{C})$ of stable characters on the groups $H(\mathbf{R})$.

In this paper we define the relevant groups H... they turn out to be the endoscopic groups from *L*-indistinguishability... and prove a matching theorem for orbital integrals. As a preliminary to the proposed dual liftings of characters we also study the "factoring" of Galois-invariant Langlands parameters for $G(\mathbb{C})$.

1. Introduction. We begin with two simple examples. Let $G(\mathbb{C}) = \mathbb{C}^x$ and $\sigma(z) = \overline{z}^{-1}$, $z \in \mathbb{C}^x$, so that $G(\mathbb{R}) = \{g \in G(\mathbb{C}): \sigma(g) = g\}$ is the unit circle in \mathbb{C}^x . A quasicharacter on \mathbb{C}^x fixed by σ , i.e., trivial on the positive reals, need not be of the form $z \to \chi(z\sigma(z)) = \chi(z/\overline{z})$, with χ a character on the unit circle. At the same time $z \in \mathbb{C}^x$ is stably σ -conjugate to -z, but not σ -conjugate (see [Sh6] for definitions). Let $f \in C_c^{\infty}(\mathbb{C}^x)$ and write $f(r, \theta)$ for $f(re^{i\theta})$. Set $H_1 = H_2 = G$, so that $H_1(\mathbb{R}) = S^1$. Let

$$f_1(e^{i\theta}) = \frac{1}{2} \int_0^\infty (f(r, \theta/2) + f(r, \theta/2 + \pi)) \, dr/r$$

and

$$f_2(e^{i\theta}) = \frac{1}{2} e^{i\theta/2} \int_0^\infty (f(r, \theta/2) - f(r, \theta/2 + \pi)) \, dr/r$$

for $-\pi < \theta < \pi$. Then both f_1 and f_2 extend smoothly to S^1 . If χ is a character on S^1 then $f \to \int_{-\pi}^{\pi} \chi(e^{i\theta}) f_1(e^{i\theta}) d\theta$ is a distribution on C^x representing the usual lift of χ to $G(\mathbf{C})$, i.e., representing the quasicharacter $z \to \chi(z\sigma(z))$. On the other hand, $f \to \int_{-\pi}^{\pi} \chi(e^{i\theta}) f_2(e^{i\theta}) d\theta$ lifts χ to the quasicharacter $z = re^{i\theta} \to \chi(z\sigma(z))e^{i\theta}$. We have therefore recovered the remaining Galois-invariant quasicharacters on \mathbf{C}^x .