REPRESENTATIONS AND AUTOMORPHISMS OF THE IRRATIONAL ROTATION ALGEBRA

BERNDT A. BRENKEN

Given an irrational number α , A_{α} is the unique C*-algebra generated by two unitary operators, U and V, satisfying the twisted commutation relation $UV = \exp(2\pi i\alpha)VU$. We investigate separable representations of A_{α} which, when restricted to the abelian C* algebra generated by V, are of uniform multiplicity m. These representations are classified by their multiplicity, a quasi-invariant Borel measure on the circle (w.r.t. rotation by the angle $2\pi\alpha$) and a unitary one cocycle.

Separable factor representations lie in this class, the measure being ergodic in this case. A factor representation is of uniform multiplicity m' on the C^* algebra generated by U, and if m, m' are relatively prime, the representation is irreducible. By use of an action of SL(2, Z) as *-automorphisms of A_{α} , that we construct, we arrive at a separating family of pure states of A_{α} whose corresponding irreducible representations provide explicit examples with m and m' occurring as any given pair of nonzero relatively prime numbers.

Introduction. We study representations of the irrational rotation algebras, a special class of C*-algebras that has received a great deal of attention in recent years [13–16]. Our focus is primarily, though not exclusively, on factor and, in particular, irreducible, representations of algebras in this family. This class of algebras is parametrized by the irrational numbers in [0, 1]. To each irrational number α in [0, 1], we make correspond the C*-algebra A_{α} generated by multiplications by continuous functions on T, the unit circle in the plane of complex numbers, and the unitary transformation on $L_2(\mathbf{T}, \nu)$ arising from rotation of T through the angle $2\pi\alpha$, where ν is (normalized) Haar measure on T. More specifically, let $M_f g$ be fg where $f \in C(\mathbf{T})$ and $g \in L_2(\mathbf{T}, \nu)$, and let $(Ug)(\exp(2\pi i\theta))$ be $g(\exp(2\pi i(\theta + \alpha)))$ for each θ in [0, 1]. Then A_{α} is the C*-algebra generated by $\{M_f, U: f \in C(\mathbf{T})\}$.

Although we have described A_{α} in a particular representation, in the first instance, it can be characterized (uniquely, as it turns out) as a C^* -algebra generated by two unitary operators U and V satisfying a "twisted" commutation relation $UV = (\exp 2\pi i\alpha)VU$. In the representation of A_{α} we described, U is as noted and V is multiplication by z (the identity transform on T). There are several other ways of viewing A_{α} that will be useful to us. The rotation of T through the angle $2\pi\alpha$ is a