REPRESENTATIONS AND AUTOMORPHISMS OF THE IRRATIONAL ROTATION ALGEBRA

Berndt A. Brenken

Abstract

Given an irrational number α, A_{α} is the unique C^{*}-algebra generated by two unitary operators, U and V, satisfying the twisted commutation relation $U V=\exp (2 \pi i \alpha) V U$. We investigate separable representations of A_{α} which, when restricted to the abelian C^{*} algebra generated by V, are of uniform multiplicity m. These representations are classified by their multiplicity, a quasi-invariant Borel measure on the circle (w.r.t. rotation by the angle $2 \pi \alpha$) and a unitary one cocycle.

Separable factor representations lie in this class, the measure being ergodic in this case. A factor representation is of uniform multiplicity m^{\prime} on the C^{*} algebra generated by U, and if m, m^{\prime} are relatively prime, the representation is irreducible. By use of an action of $\operatorname{SL}(2, \mathbf{Z})$ as ${ }^{*}$-automorphisms of A_{α}, that we construct, we arrive at a separating family of pure states of A_{α} whose corresponding irreducible representations provide explicit examples with m and m^{\prime} occurring as any given pair of nonzero relatively prime numbers.

Introduction. We study representations of the irrational rotation algebras, a special class of C^{*}-algebras that has received a great deal of attention in recent years [13-16]. Our focus is primarily, though not exclusively, on factor and, in particular, irreducible, representations of algebras in this family. This class of algebras is parametrized by the irrational numbers in $[0,1]$. To each irrational number α in $[0,1]$, we make correspond the C^{*}-algebra A_{α} generated by multiplications by continuous functions on \mathbf{T}, the unit circle in the plane of complex numbers, and the unitary transformation on $L_{2}(\mathbf{T}, \nu)$ arising from rotation of \mathbf{T} through the angle $2 \pi \alpha$, where ν is (normalized) Haar measure on T. More specifically, let $M_{f} g$ be $f g$ where $f \in C(\mathbf{T})$ and $g \in L_{2}(\mathbf{T}, \nu)$, and let $(U g)(\exp (2 \pi i \theta))$ be $g(\exp (2 \pi i(\theta+\alpha)))$ for each θ in $[0,1]$. Then A_{α} is the C^{*}-algebra generated by $\left\{M_{f}, U: f \in C(\mathbf{T})\right\}$.

Although we have described A_{α} in a particular representation, in the first instance, it can be characterized (uniquely, as it turns out) as a C^{*}-algebra generated by two unitary operators U and V satisfying a "twisted" commutation relation $U V=(\exp 2 \pi i \alpha) V U$. In the representation of A_{α} we described, U is as noted and V is multiplication by z (the identity transform on \mathbf{T}). There are several other ways of viewing A_{α} that will be useful to us. The rotation of \mathbf{T} through the angle $2 \pi \alpha$ is a

