COMPARISON THEOREMS FOR SECOND-ORDER OPERATOR-VALUED LINEAR DIFFERENTIAL EQUATIONS

G. J. Butler and L. H. Erbe

Abstract

Let B be a Banach lattice with order continuous norm, $\mathcal{L}(B)$ the algebra of bounded linear operators. Let B_{+}denote the positive cone induced by the lattice structure of B, and $\mathscr{L}_{+}(B)$ the corresponding positive cone in $\mathcal{L}(B)$. We consider second-order operator-valued differential equations of the form $Y^{\prime \prime}+Q(x) Y=0$, where $Q:[a,+\infty) \rightarrow$ $\mathcal{L}(B)$ is continuous in the uniform topology and is such that $\int_{\lambda}^{\infty} Q(t) d t$ $\in \mathcal{L}_{+}(B)$ for all $x \geq a$. Comparison theorems of Hille-Wintner type are obtained.

1. Introduction. Consider the second-order linear differential equation

$$
\begin{equation*}
Y^{\prime \prime}+Q(t) Y=0 \tag{1.1}
\end{equation*}
$$

where $Q:[a,+\infty) \rightarrow \mathcal{L}(B)$ is a continuous operator-valued function and $\mathcal{E}(B)$ represents the Banach algebra of bounded linear operators T : $B \rightarrow B$, where B denotes a Banach space. By a solution Y of (1.1) we understand a function $Y:[a, \infty) \rightarrow \mathcal{E}(B)$ which is twice continuously differentiable in the uniform operator topology and satisfying (1.1) for all $t \in[a, \infty)$. We refer to the text of Hille [12] for a discussion of the concepts of differentiation and integration of functions from $[a, \infty)$ to a Banach algebra and to [15] for basic results concerning differential equations in Banach spaces. We shall be interested in comparing solutions of (1.1) with solutions of a second equation

$$
\begin{equation*}
Y^{\prime \prime}+Q_{1}(t) Y=0 \tag{1.2}
\end{equation*}
$$

with $Q_{1}:[a, \infty) \rightarrow \mathcal{L}(B)$ continuous. A solution $Y=Y(t)$ of (1.1) (or (1.2)) is said to be non-singular at a point $t_{0} \in[a, \infty)$ if it has a bounded inverse $Y^{-1}\left(t_{0}\right) \in \mathcal{L}(B)$. If $Y(t)$ is non-singular for all $t \in\left[t_{0},+\infty\right)$, some $t_{0} \geq a$, then $Y=Y(t)$ is said to be a non-oscillatory solution of (1.1) on $\left[t_{0},+\infty\right)$. Otherwise, $Y=Y(t)$ is said to be oscillatory on $[a, \infty)$. (Note that the inverse $Y^{-1}(t)$ of a non-oscillatory solution $Y(t)$ of (1.1) is continuously differentiable.)

Equations (1.1) and (1.2) have been the subject of numerous investigators ([4]-[11], [19], and the references therein) for the case that B is a

