COMPARISON THEOREMS FOR SECOND-ORDER OPERATOR-VALUED LINEAR DIFFERENTIAL EQUATIONS

G. J. BUTLER AND L. H. ERBE

Let *B* be a Banach lattice with order continuous norm, $\mathcal{L}(B)$ the algebra of bounded linear operators. Let B_+ denote the positive cone induced by the lattice structure of *B*, and $\mathcal{L}_+(B)$ the corresponding positive cone in $\mathcal{L}(B)$. We consider second-order operator-valued differential equations of the form Y'' + Q(x)Y = 0, where $Q: [a, +\infty) \rightarrow \mathcal{L}(B)$ is continuous in the uniform topology and is such that $\int_{\lambda}^{\infty} Q(t) dt \in \mathcal{L}_+(B)$ for all $x \ge a$. Comparison theorems of Hille-Wintner type are obtained.

1. Introduction. Consider the second-order linear differential equation

(1.1)
$$Y'' + Q(t)Y = 0$$

where $Q: [a, +\infty) \to \mathcal{L}(B)$ is a continuous operator-valued function and $\mathcal{L}(B)$ represents the Banach algebra of bounded linear operators $T: B \to B$, where B denotes a Banach space. By a solution Y of (1.1) we understand a function Y: $[a, \infty) \to \mathcal{L}(B)$ which is twice continuously differentiable in the uniform operator topology and satisfying (1.1) for all $t \in [a, \infty)$. We refer to the text of Hille [12] for a discussion of the concepts of differentiation and integration of functions from $[a, \infty)$ to a Banach algebra and to [15] for basic results concerning differential equations in Banach spaces. We shall be interested in comparing solutions of (1.1) with solutions of a second equation

(1.2)
$$Y'' + Q_1(t)Y = 0$$

with Q_1 : $[a, \infty) \to \mathcal{L}(B)$ continuous. A solution Y = Y(t) of (1.1) (or (1.2)) is said to be *non-singular* at a point $t_0 \in [a, \infty)$ if it has a bounded inverse $Y^{-1}(t_0) \in \mathcal{L}(B)$. If Y(t) is non-singular for all $t \in [t_0, +\infty)$, some $t_0 \ge a$, then Y = Y(t) is said to be a non-oscillatory solution of (1.1) on $[t_0, +\infty)$. Otherwise, Y = Y(t) is said to be oscillatory on $[a, \infty)$. (Note that the inverse $Y^{-1}(t)$ of a non-oscillatory solution Y(t) of (1.1) is continuously differentiable.)

Equations (1.1) and (1.2) have been the subject of numerous investigators ([4]–[11], [19], and the references therein) for the case that B is a