INVARIANTS OF THE HEAT EQUATION

Howard D. Fegan and Peter Gilkey

Abstract

Let M be a compact Riemannian manifold without boundary and let $P: C^{\infty} V \rightarrow C^{\infty} V$ be a self-adjoint elliptic differential operator with positive definite leading symbol. The asymptotics of the heat equation $\operatorname{Tr}(\exp (-t P))$ as $t \rightarrow 0^{+}$are spectral invariants given by local formulas in the jets of the total symbol of P. Let $A(x)$ and $B(x)$ be polynomials where the degree of B is positive and the leading coefficient is positive. The asymptotics of $\operatorname{Tr}(A(P) \exp (-t B(P)))$ can be expressed linearly in terms of the asymptotics of $\operatorname{Tr}(\exp (-t P))$. Thus no new spectral information is contained in these more general expressions. We also show the asymptotics of the heat equation are generically non-zero. If one relaxes the condition that the leading symbol of P be definite, the asymptotics of $\operatorname{Tr}\left(\exp \left(-t P^{2}\right)\right)$ and $\operatorname{Tr}\left(P \exp \left(-t P^{2}\right)\right)$ form a spanning set of invariants. These are related to the zeta and eta functions using the Mellin transform, and a similar non-vanishing result holds except for the single invariant giving the residue of eta at $s=0$ which vanishes identically.

1. Introduction. Let M be a compact Riemannian manifold of dimension m without boundary. Let $P: C^{\infty}(V) \rightarrow C^{\infty}(V)$ be a self-adjoint elliptic differential operator of order $u>0$. Let $p(x, \xi)$ be the leading symbol of P for $x \in M$ and $\xi \in T^{*} M_{x}$. We suppose $p(x, \xi)$ is a positive definite matrix for $\xi \neq 0$; this implies u is even. Let $\left(\lambda_{\nu}, \theta_{\nu}\right)_{\nu=1}^{\infty}$ be a spectral resolution of P into a complete orthonormal basis θ_{ν} for $L^{2}(M)$ of eigensections so $P \theta_{\nu}=\lambda_{\nu} \theta_{\nu}$. The spectrum of P is bounded from below and the eigenvalues tend towards ∞ as $\nu \rightarrow \infty$. Order the eigenvalues so $\lambda_{1} \leq \lambda_{2} \leq \cdots$. If $t>0, \exp (-t P)$ is an infinitely smoothing operator with smooth kernel

$$
K(x, y, \exp (-t P))=\sum_{\nu} \exp \left(-t \lambda_{\nu}\right) \theta_{\nu}(x) \otimes \theta_{\nu}(y)
$$

where $\theta_{\nu}(x) \otimes \theta_{\nu}(y)$ is regarded as an endomorphism from the fiber of the bundle at y to the fiber at x.

On the diagonal, there is an asymptotic expansion of the form:

$$
K(x, x, \exp (-t P)) \simeq \sum_{j=0}^{m} t^{(n-m) / u} e_{n}(x, \exp (-t P)), \quad t \rightarrow O^{+}
$$

where $e_{n}=0$ if n is odd. In the literature, this sum is often reindexed since $e_{1}=e_{3}=\cdots=e_{2 n+1}=0$. We shall not adopt this convention as it would lead to difficulties in what follows when considering more general invariants.

