INVARIANTS OF THE HEAT EQUATION

HOWARD D. FEGAN AND PETER GILKEY

Let *M* be a compact Riemannian manifold without boundary and let $P: C^{\infty}V \rightarrow C^{\infty}V$ be a self-adjoint elliptic differential operator with positive definite leading symbol. The asymptotics of the heat equation Tr(exp(-tP)) as $t \rightarrow 0^+$ are spectral invariants given by local formulas in the jets of the total symbol of *P*. Let A(x) and B(x) be polynomials where the degree of *B* is positive and the leading coefficient is positive. The asymptotics of Tr(A(P)exp(-tB(P))) can be expressed linearly in terms of the asymptotics of Tr(exp(-tP)). Thus no new spectral information is contained in these more general expressions. We also show the asymptotics of the heat equation are generically non-zero. If one relaxes the condition that the leading symbol of *P* be definite, the asymptotics of $Tr(exp(-tP^2))$ and $Tr(Pexp(-tP^2))$ form a spanning set of invariants. These are related to the zeta and eta functions using the Mellin transform, and a similar non-vanishing result holds except for the single invariant giving the residue of eta at s = 0 which vanishes identically.

1. Introduction. Let M be a compact Riemannian manifold of dimension m without boundary. Let $P: C^{\infty}(V) \to C^{\infty}(V)$ be a self-adjoint elliptic differential operator of order u > 0. Let $p(x, \xi)$ be the leading symbol of P for $x \in M$ and $\xi \in T^*M_x$. We suppose $p(x, \xi)$ is a positive definite matrix for $\xi \neq 0$; this implies u is even. Let $(\lambda_{\nu}, \theta_{\nu})_{\nu=1}^{\infty}$ be a spectral resolution of P into a complete orthonormal basis θ_{ν} for $L^2(M)$ of eigensections so $P\theta_{\nu} = \lambda_{\nu}\theta_{\nu}$. The spectrum of P is bounded from below and the eigenvalues tend towards ∞ as $\nu \to \infty$. Order the eigenvalues so $\lambda_1 \leq \lambda_2 \leq \cdots$. If t > 0, $\exp(-tP)$ is an infinitely smoothing operator with smooth kernel

$$K(x, y, \exp(-tP)) = \sum_{\nu} \exp(-t\lambda_{\nu})\theta_{\nu}(x) \otimes \theta_{\nu}(y)$$

where $\theta_{\nu}(x) \otimes \theta_{\nu}(y)$ is regarded as an endomorphism from the fiber of the bundle at y to the fiber at x.

On the diagonal, there is an asymptotic expansion of the form:

$$K(x, x, \exp(-tP)) \simeq \sum_{j=0}^{m} t^{(n-m)/u} e_n(x, \exp(-tP)), \quad t \to O^+$$

where $e_n = 0$ if *n* is odd. In the literature, this sum is often reindexed since $e_1 = e_3 = \cdots = e_{2n+1} = 0$. We shall not adopt this convention as it would lead to difficulties in what follows when considering more general invariants.