THE SET OF PRIMES DIVIDING THE LUCAS NUMBERS HAS DENSITY $2 / 3$

J. C. Lagarias
Dedicated to the memory of Ernst Straus

Abstract

The Lucas numbers L_{n} are defined by $L_{0}=2, L_{1}=1$ and the recurrence $L_{n}=L_{n-1}+L_{n-2}$. The set of primes $S_{L}=\left\{p: p\right.$ divides L_{n} for some $n\}$ has density $2 / 3$. Similar density results are proved for sets of primes $S_{U}=\left\{p: p\right.$ divides U_{n} for some $\left.n\right\}$ for certain other special second-order linear recurrences $\left\{U_{n}\right\}$. The proofs use a method of Hasse.

1. Introduction. There has been a good deal of study of the structure of the set of prime divisors of the terms $\left\{U_{n}\right\}$ of second order linear recurrences. M. Ward [15] showed that there are always an infinite number of distinct primes dividing the terms $\left\{U_{n}\right\}$, provided we exclude certain degenerate cases such as $U_{n}=2^{n}$. In fact, under the same circumstances it is believed that the set of primes dividing the terms $U=\left\{U_{n}\right\}$ of any nondegenerate second order linear recurrence has a positive density $d(U)$ depending on the recurrence. This can be proved under the assumption that the Generalized Riemann Hypothesis is true by a method analogous to Hooley's conditional proof [4] of Artin's Conjecture for primitive roots. P. J. Stephens [13] has done this for a large class of second-order linear recurrences.

The point of this paper is that there are special second order linear recurrences where it is possible to give an unconditional proof of the existence of a density. This was shown by Hasse [3] for certain special second order linear recurrences having a reducible characteristic polynomial, in the process of solving a problem of Sierpinski [12]. Sierpinski's problem concerns the existence of a density for the set of primes p for which ord 2 is even. This set of primes is exactly the set of primes dividing some term of the sequence $V_{n}=2^{n}+1$; this sequence satisfies the reducible second order linear recurrence $V_{n}=3 V_{n-1}-2 V_{n-2}$ with $V_{0}=2$ and $V_{1}=3$.

Theorem A. (Hasse) The set of primes $S_{V}=\{p: p$ is prime and p divides $2^{n}+1$ for some $\left.n \geq 0\right\}$ has density $17 / 24$.

