ZERO SETS OF INTERPOLATING BLASCHKE PRODUCTS

Keiji Izuchi

For a function h in H^{∞} , Z(h) denotes the zero set of h in the maximal ideal space of $H^{\infty} + C$. It is well known that if q is an interpolating Blaschke product then Z(q) is an interpolation set for H^{∞} . The purpose of this paper is to study the converse of the above result. Our theorem is: If a function h is in H^{∞} and Z(h) is an interpolation set for H^{∞} , then there is an interpolating Blaschke product q such that Z(q) = Z(h). As applications, we will study that for a given interpolating Blaschke product q, which closed subsets of Z(q) are zero sets for some functions in H^{∞} . We will also give a characterization of a pair of interpolating Blaschke products q_1 and q_2 such that $Z(q_1) \cup Z(q_2)$ is an interpolation set for H^{∞} .

Let H^{∞} be the space of bounded analytic functions on the open unit disk D in the complex number plane. Identifying a function h in H^{∞} with its boundary function, H^{∞} becomes the (essentially) uniformly closed subalgebra of L^{∞} , the space of bounded measurable functions on the unit circle ∂D . A uniformly closed subalgebra B between H^{∞} and L^{∞} is called a Douglas algebra. We denote by M(B) the maximal ideal space of B. Identifying a function h in B with its Gelfand transform, we regard h as a continuous function on M(B). Sarason [10] proved that $H^{\infty} + C$ is a Douglas algebra, where C is the space of continuous functions on ∂D , and $M(H^{\infty}) = M(H^{\infty} + C) \cup D$. For a function h in H^{∞} , we denote by Z(h)the zero set in $M(H^{\infty} + C)$ for h, that is,

$$Z(h) = \{ x \in M(H^{\infty} + C); h(x) = 0 \}.$$

For a subset E of $M(H^{\infty})$, we denote by cl(E) the weak*-closure of E in $M(H^{\infty})$. A closed subset E of $M(H^{\infty})$ is called an interpolation set for H^{∞} if the restriction of H^{∞} on E, $H^{\infty}|_{E}$, coincides with C(E), the space of continuous functions on E. For points x and y in $M(H^{\infty})$, we put

$$\rho(x, y) = \sup\{|f(x)|; f \in H^{\infty}, ||f|| \le 1, f(y) = 0\}.$$

We note that if z and w are points in D, $\rho(z, w) = |z - w|/|1 - \overline{w}z|$, which is called the pseudo-hyperbolic distance on D. For a point x in $M(H^{\infty})$, we put

$$P(x) = \{ y \in M(H^{\infty}); \rho(x, y) < 1 \},\$$