# ZERO SETS OF INTERPOLATING BLASCHKE PRODUCTS 

Keisi Izuchi

For a function $h$ in $H^{\infty}, Z(h)$ denotes the zero set of $h$ in the maximal ideal space of $H^{\infty}+C$. It is well known that if $q$ is an interpolating Blaschke product then $Z(q)$ is an interpolation set for $H^{\infty}$. The purpose of this paper is to study the converse of the above result. Our theorem is: If a function $h$ is in $H^{\infty}$ and $Z(h)$ is an interpolation set for $H^{\infty}$, then there is an interpolating Blaschke product $q$ such that $Z(q)=Z(h)$. As applications, we will study that for a given interpolating Blaschke product $q$, which closed subsets of $Z(q)$ are zero sets for some functions in $H^{\infty}$. We will also give a characterization of a pair of interpolating Blaschke products $q_{1}$ and $q_{2}$ such that $Z\left(q_{1}\right) \cup Z\left(q_{2}\right)$ is an interpolation set for $H^{\infty}$.

Let $H^{\infty}$ be the space of bounded analytic functions on the open unit disk $D$ in the complex number plane. Identifying a function $h$ in $H^{\infty}$ with its boundary function, $H^{\infty}$ becomes the (essentially) uniformly closed subalgebra of $L^{\infty}$, the space of bounded measurable functions on the unit circle $\partial D$. A uniformly closed subalgebra $B$ between $H^{\infty}$ and $L^{\infty}$ is called a Douglas algebra. We denote by $M(B)$ the maximal ideal space of $B$. Identifying a function $h$ in $B$ with its Gelfand transform, we regard $h$ as a continuous function on $M(B)$. Sarason [10] proved that $H^{\infty}+C$ is a Douglas algebra, where $C$ is the space of continuous functions on $\partial D$, and $M\left(H^{\infty}\right)=M\left(H^{\infty}+C\right) \cup D$. For a function $h$ in $H^{\infty}$, we denote by $Z(h)$ the zero set in $M\left(H^{\infty}+C\right)$ for $h$, that is,

$$
Z(h)=\left\{x \in M\left(H^{\infty}+C\right) ; h(x)=0\right\}
$$

For a subset $E$ of $M\left(H^{\infty}\right)$, we denote by $\operatorname{cl}(E)$ the weak*-closure of $E$ in $M\left(H^{\infty}\right)$. A closed subset $E$ of $M\left(H^{\infty}\right)$ is called an interpolation set for $H^{\infty}$ if the restriction of $H^{\infty}$ on $E,\left.H^{\infty}\right|_{E}$, coincides with $C(E)$, the space of continuous functions on $E$. For points $x$ and $y$ in $M\left(H^{\infty}\right)$, we put

$$
\rho(x, y)=\sup \left\{|f(x)| ; f \in H^{\infty},\|f\| \leq 1, f(y)=0\right\} .
$$

We note that if $z$ and $w$ are points in $D, \rho(z, w)=|z-w| /|1-\bar{w} z|$, which is called the pseudo-hyperbolic distance on $D$. For a point $x$ in $M\left(H^{\infty}\right)$, we put

$$
P(x)=\left\{y \in M\left(H^{\infty}\right) ; \rho(x, y)<1\right\}
$$

