A UNIFIED APPROACH TO CARLESON MEASURES AND A_p WEIGHTS. II

FRANCISCO J. RUIZ AND JOSÉ L. TORREA

In this note we find for each p, $1 , a necessary and sufficient condition on the pair <math>(\mu, v)$ (where μ is a measure on $\mathbb{R}^{n+1}_+ = \mathbb{R}^n \times [0, \infty)$, and v a weight on \mathbb{R}^n) for the Poisson integral to be a bounded operator from $L^p(\mathbb{R}^n, v(x) dx)$ into $L^p(\mathbb{R}^{n+1}_+, \mu)$.

1. Introduction. In this note we find for each p, $1 , a necessary and sufficient condition on the pair <math>(\mu, v)$ (where μ is a measure on $\mathbb{R}^{n+1}_+ = \mathbb{R} \times [0, \infty)$ and v a weight on \mathbb{R}^n) for the Poisson integral to be a bounded operator from $L^p(\mathbb{R}^n, v(x) dx)$ into $L^p(\mathbb{R}^{n+1}_+, \mu)$.

Our proof follows the ideas of Sawyer [7] and the condition we find is

$$(F_p) \quad \int_{\tilde{Q}} \left[\mathscr{M} \left(v^{1-p'} \chi_Q \right)(x,t) \right]^p d\mu(x,t) \le C \int_Q v^{1-p'}(x) \, dx < +\infty$$

for all cubes in \mathbb{R}^n (cube will always means a compact cube with sides parallel to the coordinate axes).

For \mathcal{M} we denote the maximal operator

(*)
$$\mathcal{M}f(x,t) = \sup_{Q} \frac{1}{|Q|} \int_{Q} |f(x)| dx, \quad x \in \mathbb{R}^{n}, t \ge 0,$$

where the supremum is taken over the cubes Q in \mathbb{R}^n , containing x and having side length at least t.

As usual \tilde{Q} denotes the cube in \mathbb{R}^{n+1}_+ , with the cube Q as its basis.

Carleson [1] showed that \mathcal{M} is bounded from $L^{p}(\mathbb{R}^{n}, dx)$ into $L^{p}(\mathbb{R}^{n+1}, \mu)$ if and only if μ satisfies the so-called "Carleson condition"

(1)
$$\mu(\tilde{Q}) \leq C|Q|$$
 for each cube in \mathbb{R}^n .

Afterwards, Fefferman and Stein [2] found that

(2)
$$\sup_{x \in Q} \frac{\mu(\tilde{Q})}{Q} \le Cv(x) \quad \text{a.e. } x$$

is sufficient for \mathcal{M} to be bounded from $L^{p}(\mathbb{R}^{n}, v(x) dx)$ into $L^{p}(\mathbb{R}^{n+1}, \mu)$.