COUNTEREXAMPLE TO A CONJECTURE OF H. HOPF

Henry C. Wente

Abstract

The purpose of this paper is to produce an immersion of a compact oriented two-dimensional surface of genus one into Euclidean 3-space with constant mean curvature $H \neq 0$. We thus provide a counterexample in dimension 3 to the following conjecture of \mathbf{H}. Hopf.

Conjecture of H. Hopf. Let Σ be an immersion of an oriented, closed hypersurface with constant mean curvature $H \neq 0$ in R^{n}. Must Σ be the standard embedded ($n-1$)-sphere?

Two important results relating to this conjecture are due to A. D. Alexandrov and H. Hopf. A. D. Alexandrov [1] showed that the conjecture is true if Σ is an embedded hypersurface in R^{n}. This extended an old result of J. H. Jellett [10] (see also [15] p. 354), who showed the conjecture to be valid in the case where Σ is a two-dimensional star-shaped surface in R^{3}. H. Hopf himself $[8]$ showed the conjecture to be true when Σ is an immersion of S^{2} into R^{3} with constant mean curvature.

A negative answer to the Hopf conjecture in dimensions greater than three was recently supplied by Wu-Yi Hsiang [9]. He constructed a counterexample in R^{4}. He considered 3-dimensional immersions into R^{4} which were invariant under the action of $O(2) \times O(2)$, a subgroup of the isometry group for R^{4}. If one identifies R^{4} with $C \times C$ so that a point in R^{4} has coordinates $\left(z_{1}, z_{2}\right)$ where $z_{i}=x_{i}+i y_{t}$ and the action of $O(2) \times$ $O(2)$ to be given by $\left(z_{1}, z_{2}\right) \rightarrow\left(e^{i \theta} z_{1}, e^{i \alpha} z_{2}\right)$, then the orbit space is $R^{4} / O(2) \times O(2)=\left\{\left(x_{1}, x_{2}\right) \mid x_{1} \geq 0, x_{2} \geq 0\right\}$ and a surface of constant mean curvature with the desired symmetry is determined by a generating curve lying in the orbit space. Such a curve will generate a closed surface if it terminates on the positive x_{1} and x_{2} axes. Hsiang succeeded in showing that there exist such curves which generate an immersion of S^{3} into R^{4} of constant mean curvature which is not a standard sphere. This method does not carry over to the classical dimension and so the Hopf conjecture for R^{3} remains unresolved.

Our counterexample is contained in the following theorem.
Counterexample Theorem. There is a conformal immersion of R^{2} into R^{3} with constant mean curvature $H \neq 0$ which is doubly-periodic with respect to a rectangle in R^{2}. If $w=u+i v=(u, v)$ represents a typical

