ω-ELONGATIONS AND CRAWLEY'S PROBLEM

Alan H. Mekler and Saharon Shelah

 ω -elongations of Z(p) by separable *p*-primary groups are studied. Assuming (V = L), direct sums of cyclic groups are characterized using ω -elongations. Also assuming (V = L) much information is obtained about ω -elongations of Z(p) by groups which are not direct sums of cyclic groups. Finally it is shown that it is consistent that there is an uncountable group *B* with a countable basic subgroup such that there is a unique ω -elongation of Z(p) of *B*.

In this paper all groups are *p*-primary Abelian groups. Suppose *B* is a separable group; i.e. $p^{\omega}B = 0$. Here $p^{n}B = \{p^{n}x: x \in B\}$ and $p^{\omega}B = \bigcap p^{n}B$. A group *H* is said to be an ω -elongation of *A* by *B* if $A \simeq p^{\omega}H$ and $B \simeq H/p^{\omega}H$. In this paper we will study whether or not the Σ -cyclic groups (i.e. direct sum of cyclic groups) can be characterized by their elongations of Z(p). Our main theorem is:

THEOREM 2.2. Assume (V = L). A group G is Σ -cyclic iff for every ω -elongation H of Z(p) by G there is a homomorphism f from H to P such that $f(p^{\omega}H) \neq 0$. Here P is the Prüfer group generated by $\{x_n: n < \omega\}$ subject to the relations $px_0 = 0$ and $p^{n+1}x_{n+1} = x_0$. If we assume MA + \neg CH this criterion fails to characterize the Σ -cyclic groups.

Following Megibben [M] we call a group B a Crawley group, if all elongations of Z(p) by B are isomorphic (as groups). Crawley asked if all Crawley groups were Σ -cyclic. Megibben [M] showed, assuming MA + \neg Ch, there is a Crawley group which is not Σ -cyclic. Further he showed, assuming (V = L), any Crawley group of cardinality \aleph_1 must be Σ -cyclic. Megibben's proof is somewhat indirect. In particular, the proof using (V = L) involves valuated vector spaces. On aesthetic grounds it seems worthwhile to give a strictly group theoretic proof. In fact we get additional information on the structure of ω -elongations of Z(p) by groups of cardinality \aleph_1 in L. The following result speaks of "rigid" systems of ω -elongations.