# $\omega$-ELONGATIONS AND CRAWLEY'S PROBLEM 

Alan H. Mekler and Saharon Shelah


#### Abstract

$\omega$-elongations of $Z(p)$ by separable $p$-primary groups are studied. Assuming $(V=L)$, direct sums of cyclic groups are characterized using $\omega$-elongations. Also assuming ( $V=L$ ) much information is obtained about $\omega$-elongations of $Z(p)$ by groups which are not direct sums of cyclic groups. Finally it is shown that it is consistent that there is an uncountable group $B$ with a countable basic subgroup such that there is a unique $\omega$-elongation of $Z(p)$ of $B$.


In this paper all groups are $p$-primary Abelian groups. Suppose $B$ is a separable group; i.e. $p^{\omega} B=0$. Here $p^{n} B=\left\{p^{n} x: x \in B\right\}$ and $p^{\omega} B=$ $\cap p^{n} B$. A group $H$ is said to be an $\omega$-elongation of $A$ by $B$ if $A \simeq p^{\omega} H$ and $B \simeq H / p^{\omega} H$. In this paper we will study whether or not the $\Sigma$-cyclic groups (i.e. direct sum of cyclic groups) can be characterized by their elongations of $Z(p)$. Our main theorem is:

Theorem 2.2. Assume $(V=L)$. A group $G$ is $\Sigma$-cyclic iff for every $\omega$-elongation $H$ of $Z(p)$ by $G$ there is a homomorphism from $H$ to $P$ such that $f\left(p^{\omega} H\right) \neq 0$. Here $P$ is the Prüfer group generated by $\left\{x_{n}: n<\omega\right\}$ subject to the relations $p x_{0}=0$ and $p^{n+1} x_{n+1}=x_{0}$. If we assume MA + $\neg \mathrm{CH}$ this criterion fails to characterize the $\Sigma$-cyclic groups.

Following Megibben [M] we call a group $B$ a Crawley group, if all elongations of $Z(p)$ by $B$ are isomorphic (as groups). Crawley asked if all Crawley groups were $\Sigma$-cyclic. Megibben [M] showed, assuming MA + $\neg \mathrm{Ch}$, there is a Crawley group which is not $\Sigma$-cyclic. Further he showed, assuming ( $V=L$ ), any Crawley group of cardinality $\boldsymbol{\aleph}_{1}$ must be $\Sigma$-cyclic. Megibben's proof is somewhat indirect. In particular, the proof using ( $V=L$ ) involves valuated vector spaces. On aesthetic grounds it seems worthwhile to give a strictly group theoretic proof. In fact we get additional information on the structure of $\omega$-elongations of $Z(p)$ by groups of cardinality $\boldsymbol{\aleph}_{1}$ in $L$. The following result speaks of "rigid" systems of $\omega$-elongations.

