SCHRÖDINGER SEMIGROUPS ON THE SCALE OF SOBOLEV SPACES

BARRY SIMON

We consider the action of semigroups e^{-tH} , with $H = -\Delta + V$ on $L^2(\mathbb{R}^{\nu})$, on the scale of Sobolev spaces \mathscr{H}^{α} . We show that while e^{-tH} maps $L^2 = \mathscr{H}^0$ to \mathscr{H}^2 under great generality, there exist bounded V so that, for all $\beta > 0$, $e^{-tH}[\mathscr{H}^{\beta}]$ is not contained in any \mathscr{H}^{α} with $\alpha > 2$.

1. Introduction. This note represents a modest contribution to the issue of smoothing properties of Schrödinger semigroups, e^{-tH} , $H = -\Delta + V$ on $L^2(R^{\nu})$ [12]. It has been shown [3, 8, 2, 11, 12] under fairly great generality (i.e. assumptions on V) that e^{-tH} is smoothing on the scale of L^p spaces, i.e. e^{-tH} maps L^p into any L^q with $q \ge p$. Kon [7] asked the question of smoothing properties on the scale of Sobolev spaces \mathscr{H}^{α} . Below we will exploit their L^q analogs, so we define them: $f \in L^q(R^{\nu})$ is said to lie in L^q_{α} ($\alpha \ge 0$) if there exists $g \in L^q(R^{\nu})$ so that $\hat{g}(p) = (1 + |p|^2)^{\alpha/2} \hat{f}(p) \cdot L^2_{\alpha} \equiv \mathscr{H}^{\alpha}$. We will also require the spaces K_{ν} defined initially by Kato [5]: If $\nu = 1$,

$$K_{\nu} = \left\{ f \left| \sup_{x} \left[\int_{x-1}^{x+1} |f(y)| \, dy \right] < \infty \right| \right\},$$

otherwise

$$K_{\nu} = \left\langle f \left| \lim_{\alpha \downarrow 0} \left[\sup_{x} \int_{|x-y| \le \alpha} B_{\nu}(x-y) | f(y) | d^{\nu}y \right] = 0 \right| \right\rangle$$

where $B_{\nu}(x) = |x|^{-(\nu-2)}$ if $\nu \ge 3$ and $B_2(x) = -\ln |x|$. For any of these spaces χ , we define $\chi_{loc} = \{f \mid f\varphi \in \chi \text{ for all } \varphi \in C_0^{\infty}(\mathbb{R}^{\nu})\}$. We summarize properties of these spaces needed below in an appendix.

Consider for a moment $\nu = 3$. It is well known [6] that if $V \in (L^2 + L^{\infty})(R^3)$, then $D(H) = \mathscr{H}^2$, and thus obviously e^{-tH} maps $\mathscr{H}^0 = L^2$ to \mathscr{H}^2 . Since there is lots of room between L^2 and L^{∞} , one might hope that for any $V \in L^{\infty}$, L^2 is mapped into some \mathscr{H}^{α} with $\alpha > 2$. Our main result in §2 will be to show there are $V \in L^{\infty}$ with compact support, so that $\operatorname{Ran}(e^{-tH})$ is not in any \mathscr{H}^{α} with $\alpha > 2$. Indeed, we will prove:

THEOREM 1. Suppose that $V_{+} = \max(V, 0) \in K_{\nu}^{\text{loc}}$ and $V_{-} = \max(-V, 0) \in K_{\nu}$ and that $He^{-\iota H}\varphi$ and $e^{-\iota H}\varphi$ lie in $\mathscr{H}_{\text{loc}}^{\alpha}$ for some $\alpha > 2$ and for one $\varphi \ge 0$ ($\varphi \neq 0$). Then for $\beta = \min(\alpha - 2, 1)$, $V \in L_{\beta, \text{loc}}^{4/3}$.