ON EXTREME POINTS AND SUPPORT POINTS OF THE FAMILY OF STARLIKE FUNCTIONS OF ORDER α

A. A. S. PERERA AND D. R. WILKEN

Let $St(\alpha)$ denote the subclass of functions f(z) analytic in the open unit disk D which satisfy the conditions f(0) = 0, f'(0) = 1 and $\operatorname{Re}(zf'(z)/f(z)) > \alpha$ for z in D. In this note we investigate the compact, convex family $\cos S(St(\alpha))$ which is the closed convex hull of the set of all functions analytic in D that are subordinate to some function in $St(\alpha)$, $\alpha < 1/2$. The principal result establishes that every support point of $\cos S(St(\alpha))$ arising from a "nontrivial" functional must also be an extreme point, hence a function of the form $f(z) = xz/(1 - yz)^{2(1-\alpha)}$, |x| = |y| = 1.

To amplify on this synopsis, let \mathscr{A} denote the set of functions analytic in the open unit disk $D = \{z \in \mathbb{C} \mid |z| < 1\}$. Then \mathscr{A} is a locally convex linear topological space under the topology of uniform convergence on compact subsets of D. A function f in \mathscr{A} is said to be subordinate to a function F in \mathscr{A} (written f < F), if there is a function φ in B_0 such that $f(z) = F(\varphi(z))$, where $B_0 = \{\varphi \in \mathscr{A} \mid \varphi(0) = 0, |\varphi(z)| < 1 \text{ in } D\}$.

Let \mathcal{F} be a compact subset of \mathcal{A} . A function f in \mathcal{F} is a support point of \mathcal{F} if there is a continuous linear functional J on \mathcal{A} such that

$$\operatorname{Re} J(f) = \max\{\operatorname{Re} J(g) | g \in \mathcal{F}\}$$

and ReJ is non-constant on \mathcal{F} . We use $\Sigma \mathcal{F}$ to denote the set of support points of \mathcal{F} and $\overline{co}\mathcal{F}$ and $\mathscr{E}\overline{co}\mathcal{F}$ to denote, respectively, the closed convex hull of \mathcal{F} and the set of extreme points of the closed convex hull of \mathcal{F} .

Let $S(St(\alpha))$ denote the set of functions in \mathscr{A} that are subordinate to some function in $St(\alpha)$. Then $S(St(\alpha))$ is a compact subset of \mathscr{A} [11, p. 365]. In [3] and [6] it was shown that

$$\overline{\operatorname{co}}\operatorname{St}(\alpha) = \left\{ \int \frac{z}{(1-xz)^{2(1-\alpha)}} \, d\mu(x) \colon \mu \text{ is a probability measure} \right.$$
the unit circle

and that

$$\mathscr{E}\overline{\operatorname{co}}\operatorname{St}(\alpha) = \sum \operatorname{St}(\alpha) = \left\{ \frac{z}{(1-xz)^{2(1-\alpha)}} : |x| = 1 \right\}.$$